In this paper, we study a nonlinear bearing-only target tracking problem using four different estimation strategies and compare their performances. This study is based on a classical ground surveillance problem, where a moving airborne platform with a sensor is used to track a moving target. The tracking scenario is set in two dimensions, with the measurement providing angle observations. Four nonlinear estimation strategies are used to track the target: the popular extended and unscented Kalman filters (EKF/UKF), the particle filter (PF), and the relatively new smooth variable structure filter (SVSF). The SVSF is a predictor-corrector method used for state and parameter estimation. It is a sliding mode estimator, where gain switching is used to ensure that the estimates converge to true state values. An internal model of the system, either linear or nonlinear, is used to predict an a priori state estimate. A corrective term is then applied to calculate the a posteriori state estimate, and the estimation process is repeated iteratively. The performances of these methods applied on a bearing-only target tracking problem are compared in terms of estimation accuracy and filter robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.