One of the ways of reducing metal corrosion and its devastating effects is by using organic corrosion inhibitors. This is because of the π-conjugation in their moieties, their ability to donate electrons to the metal's vacant d-orbitals, and their low lying LUMO orbitals for accepting electrons as well from the metal, all these improve their adsorption on the metal surface. (E)-5-((4-benzoylphenyl)diazenyl)-2hydroxybenzoic acid (AD4) was synthesized via the coupling reaction of p-aminobenzophenone and Salicylic acid, characterized via FTIR, UV/Vis, 1 H-NMR, and 13 C-NMR spectroscopy. The melting point of AD4 is 103 o C-106 o C indicating that it is thermally stable and pure. Gravimetric and potentiodynamic polarization techniques were employed to obtain the corrosion rates (Cr) and percentage inhibition efficiency (%IE) at different concentrations of the inhibitor and at different temperatures. The thermodynamic parameters like Enthalpy, ∆H o ads, Entropy, ∆S o ads and free energy of adsorption (∆Gads) of Adsorption were calculated. The Langmuir adsorption isotherm was used to describe the adsorption of AD4 molecules on mild steel. Quantum mechanical calculations were employed to calculate the electronic properties and global reactivity descriptors of AD4. The theoretical results are broadly consistent with experimental results. From the results obtained AD4 could be used as a corrosion inhibition agent in the oil and gas industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.