The observation of internal solitary waves (ISWs) propagating upstream along a strongly stratified bottom layer on the California shelf is reported. An increased concentration of particulates in the water column accompanies the passage of these ISW packets. The estimated local Richardson number in the bottom vicinity is around 1/4, and a vertical coefficient of eddy diffusivity of order 10 Ϫ2 m 2 s Ϫ1 is associated with the upstream propagating leading ISW. The leading ISW gave rise to reversed flow in an 8-m layer above the bottom. It is argued that the upstream propagating ISWs were generated by resonant flow over bottom topography. Internal waves generated in this way seem to be frequent in the record of a month-long experiment. Model results suggest that the ISWs can carry up to 73% of such generated long wave energy. The ocean conditions at the site are similar to those of other coastal sites, which suggests that the phenomenon described here may be common.
Using two-point velocity and position data from the near-simultaneous release of O(100) GPS-tracked surface drifters in the northern Gulf of Mexico, we examine the applicability of classical turbulent scaling laws to upper ocean velocity fields. The dataset allows direct estimates of both velocity structure functions and the temporal evolution of the distribution of particle pair separations. On 100 m-10 km spatial scales, and time scales of order 1-10 days, all metrics of the observed surface fluctuations are consistent with standard Kolmogorov turbulence theory in an energy cascade inertial-range regime. The sign of the third-order structure function is negative and proportional to the separation distance for scales 10 km where local, fluctuating Rossby numbers are found to be larger than 0.1. The scale-independent energy dissipation rate, or downscale spectral flux, estimated from Kolmogorov's 4/5th law in this regime closely matches nearby microscale dissipation measurements in the near-surface. In contrast, similar statistics derived from a like-sized set of synthetic drifters advected by purely geostrophic altimetric AVISO data agree well with Kolmogorov-Kraichnan scaling for 2D turbulence in the forward enstrophy cascade range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.