An ‘attract-and-kill’ (AK) device was evaluated for suppression of adult Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), on residential citrus. The AK device, made from weather-resistant plasticized PVC, lured D. citri adults by simulating the color of citrus flush and killed them with beta-cyfluthrin. This study evaluated: 1) lethality of AK devices weathered up to 8 wk on residential citrus; 2) survival of psyllids caged with potted plants and AK devices; 3) psyllid suppression achieved by AK devices on individual dooryard trees. AK devices weathered for up to 8 wk remained lethal to psyllids. Greenhouse trials evaluated survival of adult psyllids caged for 4 d with orange jasmine plants that were: 1) treated with an (beta-cyfluthrin-infused) AK device; 2) treated with a blank (no insecticide) AK device; or 3) ‘untreated’ with no AK device. After 4 d, psyllid survival was on average 95% lower among adults exposed to plants with AK devices than adults exposed to untreated plants or plants with blank AK devices. Less than half of the adults exposed to plants with AK devices were alive after 1 d and nearly all were dead after 4 d. Deployment of 20 AK devices per tree provided significant psyllid suppression on infested lemon trees from winter to summer and reduced mean reproduction (cumulative eggs) by 91% and mean attack intensity (cumulative psyllid-days) of adults by 59% and nymphs by 53%. AK devices could be an effective control option for D. citri in urban areas.
The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is a worldwide pest of citrus crops and is responsible for proliferation of citrus bacterial canker, Xanthomonas axonopodis (Hasse) pv. citri (Gamma Proteobacteria: Xanthomonadaceae). We developed and evaluated an attracticide formulation, termed MalEx, for control of P. citrella. MalEx is a viscous paste with UV-protective properties that is dispensed as 50-ll droplets using custom-made calibrated pumps. A formulation containing 0.016% P. citrella pheromone [3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal and (Z,Z)-7,11-hexadecadienal] and 6% permethrin was found to suppress male response to pheromone in the field better than formulations containing 10· less pheromone. Although formulations without permethrin showed some suppression of male activity because of mating disruption, addition of 6% permethrin to the formulation was required for optimal efficacy. When MalEx, containing 0.016% pheromone and 6% permethrin, was applied at 3 000 point sources ha, the application height did not influence efficacy of male P. citrella suppression within mature 4-m tall citrus trees. Decreasing the rate of MalEx from 3 000 to 1 500 droplets ha )1 reduced efficacy as measured by both male P. citrella activity and larval infestation. Although 4 500 droplets ha )1 did not result in statistically better efficacy than 3 000 droplets ha, there was a noticeable trend for higher efficacy as droplet density increased. Continuous treatment of 0.5-ha blocks of citrus with MalEx over the course of 112 days reduced larval infestation of new flush, as compared with those in untreated control plots, by 3.6-7.2· depending on droplet application density. In laboratory behavioral bioassays, the attractiveness of MalEx droplets to male P. citrella was drastically reduced after 21 days of field aging. However, our laboratory investigation confirmed that 100% of males contacting MalEx droplets, aged up to 35 days in the field, were killed within 24 h. Direct observation of male P. citrella behavior in the field confirmed that attracted males made contact with droplets. Control of P. citrella with MalEx should reduce the number of required broad spectrum sprays for leafminer management in both field and citrus nursery settings.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
The effect of exposure to both the pheromone and insecticide constituents of an attracticide formulation on subsequent pheromonal response of male oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), was tested in several wind tunnel bioassays. Male response to the attracticide formulation was significantly reduced in all behavioral categories, including source contact 1 h after sublethal exposure (both by voluntary contact in the wind tunnel and forced application in the laboratory) to the attracticide formulation containing inert ingredients, pheromone, and insecticide. Sublethal exposure to the attracticide formulation in the laboratory (forced application) 24 h before the bioassay resulted in a significantly lower proportion of males subsequently responding to attracticide droplets in the wind tunnel. However, voluntary contact of male moths with the toxic formulation in the wind tunnel had no effect on subsequent response 24 h later. Exposure of males to different constituents of the attracticide formulation demonstrated that both pheromone and insecticide exerted effects on subsequent male pheromonal response. Exposure to the formulation containing the inert ingredients plus the pheromone (no insecticide) significantly reduced male behavioral responses to an attracticide droplet in the wind tunnel 1 h but not 24 h after exposure, compared with males treated with inert ingredients alone. Response to attracticide droplets was further reduced by exposure to the entire attracticide formulation containing inert ingredients, pheromone and insecticide at both 1 and 24 h postexposure. Similarly, males exposed to inert ingredients plus pheromone were less likely to orient to female-produced plumes 1 h but not 24 h after exposure than males treated with inert ingredients alone. Response to female-produced plumes was further reduced at 1 h but not at 24 h after exposure to the entire attracticide formulation. Mating success of males was significantly reduced by exposure to the entire attracticide formulation but not to the formulation without insecticide when placed with females 1 and 24 h postexposure. These findings suggest that sublethal poisoning of males exposed to the attracticide formulation will enhance the effectiveness of this formulation under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.