There was an error published in J. Exp. Biol. 215, 2022-2029 In the final sentence of paragraph 4 of 'Effects on SR' in the Results section, the total number of proboscis extensions is given, rather than percentages. The correct sentence is published below.On average, control nectar foragers had a lower mean total PER bee −1 (4.1±2.3 responses) than control pollen foragers (4.8±2.1 responses).The authors apologise for any confusion this may have caused.
2081
Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.
As the sole reproductive female in a honey bee (Apis mellifera) colony, the queen’s health is critical to colony productivity and longevity. Beekeeping operations typically rely on the commercial mass production of queens for colony multiplication, which involves manipulating and isolating the queens by confining them in cages during early development. Using common queen-rearing techniques, this study shows that segregating newly eclosed queens from their worker attendants for 72 hours using queen protector cages has a significant impact on the total amount of gut bacteria carried by those queens compared to queens that have unrestricted access to attendants upon eclosion. Isolated virgin queens sampled immediately after isolation at 4 days post eclosure had significantly more bacteria and a less consistent microbiota composition than their non-isolated peers. Furthermore, this effect lasted into the mating life of queens, since mated queens that had been isolated after emergence and then sampled at 14 days post eclosure also had significantly more microbiota compared to non-isolated mated queens of the same age. The causes and potential impacts of this alteration are not clear and deserve further investigation. This study also verifies earlier findings that honey bee queens lack the core microbiome found within honey bee workers.
There was an error published in J. Exp. Biol. 215, 2022-2029 In the final sentence of paragraph 4 of 'Effects on SR' in the Results section, the total number of proboscis extensions is given, rather than percentages. The correct sentence is published below.On average, control nectar foragers had a lower mean total PER bee −1 (4.1±2.3 responses) than control pollen foragers (4.8±2.1 responses).The authors apologise for any confusion this may have caused.
2081
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.