The degree to which mental representations of the body can be established and maintained without somatosensory input remains unclear. We contrast two “deafferented” adults, one who acquired large fibre sensory loss as an adult (IW) and another who was born without somatosensation (KS). We compared their responses to those of matched controls in three perceptual tasks: first accuracy of their mental image of their hands (assessed by testing recognition of correct hand length/width ratio in distorted photographs and by locating landmarks on the unseen hand); then accuracy of arm length judgements (assessed by judgement of reaching distance), and finally, we tested for an attentional bias towards peri-personal space (assessed by reaction times to visual target presentation). We hypothesised that IW would demonstrate responses consistent with him accessing conscious knowledge, whereas KS might show evidence of responses dependent on non-conscious mechanisms. In the first two experiments, both participants were able to give consistent responses about hand shape and arm length, but IW displayed a better awareness of hand shape than KS (and controls). KS demonstrated poorer spatial accuracy in reporting hand landmarks than both IW and controls, and appears to have less awareness of her hands. Reach distance was overestimated by both IW and KS, as it was for controls; the precision of their judgements was slightly lower than that of the controls. In the attentional task, IW showed no reaction time differences across conditions in the visual detection task, unlike controls, suggesting that he has no peri-personal bias of attention. In contrast, KS did show target location-dependent modulation of reaction times, when her hands were visible. We suggest that both IW and KS can access a conscious body image, although its accuracy may reflect their different experience of hand action. Acquired sensory loss has deprived IW of any subconscious body awareness, but the congenital absence of somatosensation may have led to its partial replacement by a form of visual proprioception in KS.
Studies of chronically deafferented participants have illuminated how regaining some motor control after adult-onset loss of proprioceptive and touch input depends heavily on cognitive control. In this study we contrasted the performance of one such man, IW, with KS, a woman born without any somatosensory fibres. We postulated that her life-long absence of proprioception and touch might have allowed her to automate some simple visually-guided actions, something IW appears unable to achieve. We tested these two, and two age-matched control groups, on writing and drawing tasks performed with and without an audio-verbal echoing task that added a cognitive demand. In common with other studies of skilled action, the dual task was shown to affect visuo-motor performance in controls, with less well-controlled drawing and writing, evident as increases in path speed and reduction in curvature and trial duration. We found little evidence that IW was able to automate even the simplest drawing tasks and no evidence for automaticity in his writing. In contrast, KS showed a selective increase in speed of signature writing under the dual-task conditions, suggesting some ability to automate her most familiar writing. We also tested tracing of templates under mirror-reversed conditions, a task that imposes a powerful cognitive planning challenge. Both IW and KS showed evidence of a visuo-motor planning conflict, as did the controls, for shapes with sharp corners. Overall, IW was much faster than his controls to complete tracing shapes, consistent with an absence of visuo-proprioceptive conflict, whereas KS was slower than her controls, especially as the corners became sharper. She dramatically improved after a short period of practice while IW did not. We conclude that KS, who developed from birth without proprioception, may have some visually derived control of movement not under cognitive control, something not seen in IW. This allowed her to automate some writing and drawing actions, but impaired her initial attempts at mirror-tracing. In contrast, IW, who lost somatosensation as an adult, cannot automate these visually guided actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.