Metal-organic frameworks (MOFs) have expanded into a burgeoning topic in materials science and engineering. Their success mostly stems from the versatility of their structure that can be diversely designed by...
X-ray diffraction (XRD) analysis identifies the long-range order (ie, the structure) of crystalline materials and the short-range order of non-crystalline materials. From this information we deduce lattice constants and phases, average grain size, degree of crystallinity, and crystal defects. Advanced XRD provides information about strain, texture, crystalline symmetry, and electron density. When radiation impinges upon a solid, coherent scattering of the radiation by periodically spaced atoms results in scattered beams that produce spot patterns from single crystalline samples and ring patterns from polycrystalline samples. The pattern, intensities of the diffraction maxima (peaks or lines), and their position (Bragg angle θ or interplanar spacing d hkl ), correlate to a specific crystal structure. In 2016 and 2017 close to 100 000 articles mention XRD-more than any other analytical technique, and it was the top analytical technique of researchers that published in Can. J. Chem. Eng. A bibliographic analysis based on the Web of Science groups articles referring to XRD into five clusters: the largest cluster includes research on nanoparticles, thin films, and optical properties; composites, electro-chemistry, and synthesis are topics of the second largest cluster; crystal morphology and catalysis are next; photocatalysis and solar cells comprise the fourth largest cluster; and, waste water is among the topics of the cluster with the least number of occurrences. Researchers publishing in Can. J. Chem. Eng. focus most of the XRD analyses to characterize polymers, nanocomposite materials, and catalysts. K E Y W O R D Scrystallinity, Debye-Scherrer method, limit of quantification, nanoparticle, XRD
Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.
This Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP–protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement (in situ or ex situ) do not impact the results, unlike commonly assumed. Regarding the binding reversibility, the experimental design (either dilution or competition experiments) is also shown to be a key factor, probably due to nontrivial protein binding mechanisms, which could explain the paradoxical phenomena reported in the literature. Overall, we suggest that to truly predict and control the protein corona, future efforts should be directed toward the mechanistic aspects of protein adsorption.
Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents’ nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.