The encapsulation of guest molecules within polymeric hollow nano- or microscale structures is a rapidly developing field of interdisciplinary research due to a variety of applications ranging from drug delivery and sensor fabrication to nanoscale synthesis and bioinspired mineralization. We report on the encapsulation of pyrene within three-dimensional polypyrrole microvessels synthesized by precipitation polymerization of pyrrole onto toluene droplets that contain pyrene. Steady state and time-resolved fluorescence measurements show that the optical response and dynamics of encapsulated pyrene is significantly different from that in the free solution, likely due to interactions with oligomeric species generated during the polymerization process that partition into the organic core of the microvessel. Our results indicate that the encapsulation process can have a significant influence on the local environment of encapsulated species, an issue that is critical from the perspective of potential synthetic or medical applications.
Many phosphorylated nucleoside derivatives have therapeutic potential, but their application is limited by problems with membrane permeability and with intracellular delivery. Here, we prepared polypyrrole microvessel structures modified with superparamagnetic nanoparticles for use as potential carriers of nucleotides. The microvessels were prepared via the photochemical polymerization of the monomer onto the surface of aqueous ferrofluidic droplets. A complementary physicochemical analysis revealed that a fraction of the nanoparticles was embedded in the microvessel walls, while the other nanoparticles were in the core of the vessel. SQUID (superconducting quantum interference device) measurements indicated that the incorporated nanoparticles retained their superparamagnetic properties; thus, the resulting nanoparticle-modified microvessels can be directed by an external magnetic field. As a result of these features, these microvessels may be useful as drug carriers in biomedical applications. To demonstrate the encapsulation of drug molecules, two labeled mRNA cap analogues, nucleotide-derived potential anticancer agents, were used. It was shown that the cap analogues are located in the aqueous core of the microvessels and can be released to the external solution by spontaneous permeation through the polymer walls. Mass spectrometry analysis confirmed that the cap analogues were preserved during encapsulation, storage, and release. This finding provides a foundation for the future development of anticancer therapies and for the delivery of nucleotide-based therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.