Osteoid osteoma is a small, benign but painful lesion with specific clinical and imaging characteristics. Computed tomography is the imaging modality of choice for visualization of the nidus and for treatment planning. Complete surgical excision of the nidus is curative, providing symptomatic relief, and is the traditionally preferred treatment. However, surgery has disadvantages, including the difficulty of locating the lesion intraoperatively, the need for prolonged hospitalization, and the possibility of postoperative complications ranging from an unsatisfactory cosmetic result to a fracture. Percutaneous radiofrequency (RF) ablation, which involves the use of thermal coagulation to induce necrosis in the lesion, is a minimally invasive alternative to surgical treatment of osteoid osteoma. With reported success rates approaching 90%, RF ablation should be considered among the primary options available for treating this condition.
HighlightsIncreased extrusion of the medial meniscus with loaded MRI compared to unloaded.No change in lateral meniscus extrusion between loaded and unloaded MRI.Increased extrusion of the medial meniscus with loaded MRI in those with tears.
Recognition of the imaging manifestations of fibrodysplasia ossificans progressiva is imperative to early diagnosis in order to appropriately direct patient care and preclude unnecessary biopsies or surgical procedures.
Image-guided bone tumor biopsies can be successfully used to acquire cellular and molecular material for analyses in patients with osteoblastic prostate cancer metastases. Diagnostic yields are significantly increased in lesions with areas of radiolucency, density ≤ 475 HU, ill-defined margins, and interval growth and in patients with alkaline phosphatase > 110 U/L.
Previous molecular genetic studies on HeLa cell (a cervical cancer cell line) derived non-tumorigenic and tumorigenic hybrids have localized a tumor suppressor gene to the long arm of chromosome 11. Analysis of cervical cancer cell lines using chromosome 11 specific probes showed deletion and translocation of 11q13 sequences in five out of eight cell lines. Fluorescence in situ hybridization (FISH), using 11q13 specific probes, has shown interstitial deletion of 11q13 sequences in the HeLa cells. In order to determine whether 11q13 deletions occur in primary cervical tumors, we analysed 36 tumors using 20 different microsatellite and RFLP markers. Semi automated fluorescein based allelotyping was performed to identify loss of heterozygosity (LOH) in tumors. The results showed allelic loss in 17 (47%) tumors. Three different regions of loss, one near MEN1, the second near D11S913, and the third near INT2 locus were observed. The smallest region of deletion overlap at the D11S913 locus was localized to a 300 Kb distance between D11S4908 and D11S5023. Fluorescence in situ hybridization (FISH), using 11q13 specific cosmid and BAC (bacterial artificial chromosome) probes, confirmed allelic deletion in the tumors. PCR analysis further identified homozygous deletion of 11q13 sequences in a primary tumor, in HeLa cells and in two HeLa cell derived tumorigenic hybrid cell lines. The homozygous deletion in the cell lines was mapped to a 5.7 kb sequence of 11q13. We hypothesize therefore that a putative cervical cancer tumor suppressor gene exists within the 300 kb of chromosome 11q13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.