Antimicrobial drug resistance is currently one of the most critical health issues. Pathogens resistant to last-resort antibiotics are increasing, and very few effective antibacterial agents have been introduced in recent years. The promising drug candidates are often discontinued in the primary stages of the drug discovery pipeline due to their unspecific reactivity (PAINS), toxicity, insufficient stability, or low water solubility. In this work, we investigated a series of substituted N-oxazolyl- and N-thiazolylcarboxamides of various pyridinecarboxylic acids. Final compounds were tested against several microbial species. In general, oxazole-containing compounds showed high activity against mycobacteria, especially Mycobacterium tuberculosis (best MICH37Ra = 3.13 µg/mL), including the multidrug-resistant strains. Promising activities against various bacterial and fungal strains were also observed. None of the compounds was significantly cytotoxic against the HepG2 cell line. Experimental measurement of lipophilicity parameter log k’w and water solubility (log S) confirmed significantly (typically two orders in logarithmic scale) increased hydrophilicity/water solubility of oxazole derivatives in comparison with their thiazole isosteres. Mycobacterial β-ketoacyl-acyl carrier protein synthase III (FabH) was suggested as a probable target by molecular docking and molecular dynamics simulations.
A series of N-pyridinylbenzamides was designed and prepared to investigate the influence of isosterism and positional isomerism on antimycobacterial activity. Comparison to previously published isosteric N-pyrazinylbenzamides was made as an attempt to draw structure-activity relationships in such type of compounds. In total, we prepared 44 different compounds, out of which fourteen had minimum inhibitory concentration (MIC) values against Mycobacterium tuberculosis H37Ra below 31.25 µg/ml, most promising being N-(5-chloropyridin-2-yl)-3-(trifluoromethyl) benzamide (23) and N-(6-chloropyridin-2-yl)-3-(trifluoromethyl)benzamide (24) with MIC = 7.81 µg/ml (26 µm). Five compounds showed broad-spectrum antimycobacterial activity against M. tuberculosis H37Ra, M. smegmatis and M. aurum. N-(pyridin-2-yl)benzamides were generally more active than N-(pyridin-3-yl)benzamides, indicating that N-1 in the parental structure of N-pyrazinylbenzamides might be more important for antimycobacterial activity than N-4. Marginal antibacterial and antifungal activity was observed for title compounds. The hepatotoxicity of title compounds was assessed in vitro on hepatocellular carcinoma cell line HepG2, and they may be considered non-toxic (22 compounds with IC 50 over 200 µm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.