Currently, sensors invade into our everyday life to bring higher life standards, excellent medical diagnostic and efficient security. Plasmonic biosensors demonstrate an outstanding performance ranking themselves among best candidates for different applications. However, their sensitivity is still limited that prevents further expansion. Here we present a novel concept of magnetoplasmonic sensor with ultranarrow resonances and high sensitivity. Our approach is based on the combination of a specially designed one-dimensional photonic crystal and a ferromagnetic layer to realize ultralong-range propagating magnetoplasmons and to detect alteration of the environment refractive index via observation of the modifications in the Transversal Magnetooptical Kerr Effect spectrum. The fabrication of such a structure is relatively easy in comparison with e.g. nanopatterned samples. The fabricated heterostructure shows extremely sharp (angular width of 0.06°) surface plasmon resonance and even sharper magnetoplasmonic resonance (angular width is 0.02°). It corresponds to the propagation length as large as 106 μm which is record for magnetoplasmons and promising for magneto-optical interferometry and plasmonic circuitry as well as magnetic field sensing. The magnitude of the Kerr effect of 11% is achieved which allows for detection limit of 1∙10−6. The prospects of further increase of the sensitivity of this approach are discussed.
Nanostructured magnetic materials provide an efficient tool for light manipulation on sub-nanosecond and sub-micron scales, and allow for the observation of the novel effects which are fundamentally impossible in smooth films. For many cases of practical importance, it is vital to observe the magneto-optical intensity modulation in a dual-polarization regime. However, the nanostructures reported on up to date usually utilize a transverse Kerr effect and thus provide light modulation only for p-polarized light. We present a concept of a transparent magnetic metasurface to solve this problem, and demonstrate a novel mechanism for magneto-optical modulation. A 2D array of bismuth-substituted iron-garnet nanopillars on an ultrathin iron-garnet slab forms a metasurface supporting quasi-waveguide mode excitation. In contrast to plasmonic structures, the all-dielectric magnetic metasurface is shown to exhibit much higher transparency and superior quality-factor resonances, followed by a multifold increase in light intensity modulation. The existence of a wide variety of excited mode types allows for advanced light control: transmittance of both p- and s-polarized illumination becomes sensitive to the medium magnetization, something that is fundamentally impossible in smooth magnetic films. The proposed metasurface is very promising for sensing, magnetometry and light modulation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.