Redox-isomerism, i.e. the change of metal cation valence state in organic complexes, can find promising applications in multistable molecular switches for various 2 molecular electronic devices. However, despite a large amount of studies devoted to such processes in organic complexes of multivalent lanthanides, redox-isomeric transformations were never observed for europium. In the present work, we demonstrate the unique case of redox isomerization of Eu(III)/Eu(II) complexes on the example of Eu(III) doubledecker octa-nbutoxyphthalocyaninate (Eu[(BuO)8Pc]2) under ambient conditions (air, room temperature). It is shown that assumption of the face-on orientation on the aqueous subphase surface, in which two of each phthalocyanine decks in Eu[(BuO)8Pc]2 are located in different media (air and water), leads to the intramolecular electron transfer that results in formation of divalent Eu(II) cation in the complex. Lateral compression of the thus formed monolayer brings on the reorientation of the bisphthalocyaninate to the edge-on state, in which the ligands can be considered identical, and occurrence of the reverse redox-isomeric transformation into the complex with trivalent Eu cation. Both redox-isomeric states were directly observed by XANES spectroscopy in ultrathin films formed under different conditions.
Coordination-induced spin crossover (CISCO) in nickel(II) porphyrinates is an intriguing phenomenon that is interesting from both fundamental and practical standpoints. However, in most cases, realization of this effect requires extensive synthetic protocols or extreme concentrations of extra-ligands. Herein we show that CISCO effect can be prompted for the commonly available nickel(II) tetraphenylporphyrinate, NiTPP, upon deposition of this complex at the air/water interface together with a ruthenium(II) phthalocyaninate, CRPcRu(pyz)2, bearing two axial pyrazine ligands. The latter was used as a molecular guiderail to align Ni···Ru···Ni metal centers for pyrazine coordination upon lateral compression of the system, which helps bring the two macrocycles closer together and forces the formation of Ni–pyz bonds. The fact of Ni(II) porphyrinate switching from low- to high-spin state upon acquiring additional ligands can be conveniently observed in situ via reflection-absorption UV-vis spectroscopy. The reversible nature of this interaction allows for dissociation of Ni–pyz bonds, and thus, change of nickel cation spin state, upon expansion of the monolayer.
Supramolecular systems based on transition metal complexes capable of reversible redox isomerization due to intramolecular electron transfer are one of the most interesting objects from the viewpoint of molecular switches’ design. In the present work, a comparative analysis of valence transformation of lanthanide complexes (Sm, Er, Tm and Yb) with donor-substituted bis-phthalocyaninates occurring during the formation and compression–extension of Langmuir monolayers was carried out using data of UV–Vis–NIR spectroscopy. It is shown that the numerical values of the Q-band positions in the absorption spectra for the extended monolayers of the complexes under study depend linearly on the ionic radius of the metal center, if the metals have an oxidation state of +2. This makes it possible to draw a direct analogy between the behavior of the studied compounds and analogous europium and cerium complexes, for which direct evidence of the valence tautomerism in such planar systems was obtained earlier. This led to the conclusion that the intramolecular electron transfer from the phthalocyanine ligand to the central metal ion [Ln3+(R4Pc2‑)(R4Pc•−)]0 → [Ln2+(R4Pc•−)2]0 occurs when solutions of donor-substituted bis-phthalocyaninates of samarium, erbium, thulium, and ytterbium are deposited onto the water subphase, and the reverse redox-isomeric transition is observed in most cases when the monolayer is compressed to high surface pressures. The first of these switches is related to the asymmetry of the air/water interface, and the second one is controlled by the lateral compression–expansion of the monolayer. It has been demonstrated that when bis-phthalocyanine monolayers of lanthanides with variable valence are transferred to solid substrates, the valence state of the metal center, and consequently, the redox-isomeric state of the complex, do not change. This means that we are able to form films with a predetermined state of the complex. Note that the redox-isomeric state of complexes should affect the entire range of physicochemical properties of such films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.