Illumination estimation is the essential step of computational color constancy, one of the core parts of various image processing pipelines of modern digital cameras. Having an accurate and reliable illumination estimation is important for reducing the illumination influence on the image colors. To motivate the generation of new ideas and the development of new algorithms in this field, two challenges on illumination estimation were conducted. The main advantage of testing a method on a challenge over testing it on some of the known datasets is the fact that the ground‐truth illuminations for the challenge test images are unknown up until the results have been submitted, which prevents any potential hyperparameter tuning that may be biased. The First illumination estimation challenge (IEC#1) had only a single task, global illumination estimation. The second illumination estimation challenge (IEC#2) was enriched with two additional tracks that encompassed indoor and two‐illuminant illumination estimation. Other main features of it are a new large dataset of images (about 5000) taken with the same camera sensor model, a manual markup accompanying each image, diverse content with scenes taken in numerous countries under a huge variety of illuminations extracted by using the SpyderCube calibration object, and a contest‐like markup for the images from the Cube++ dataset. This article focuses on the description of the past two challenges, algorithms which won in each track, and the conclusions that were drawn based on the results obtained during the first and second challenge that can be useful for similar future developments.
This paper describes a new open data set, consisting of images of a chessboard collected underwater with different refractive indices, which allows for investigation of the quality of different radial distortion correction methods. The refractive index is regulated by the degree of salinity of the water. The collected data set consists of 662 images, and the chessboard cell corners are manually marked for each image (for a total of 35,748 nodes). Two different mobile phone cameras were used for the shooting: telephoto and wide-angle. With the help of the collected data set, the practical applicability of the formula for correction of the radial distortion that occurs when the camera is submerged underwater was investigated. Our experiments show that the radial distortion correction formula makes it possible to correct images with high precision, comparable to the precision of classical calibration algorithms. We also show that this correction method is resistant to small inaccuracies in the indication of the refractive index of water. The data set, as well as the accompanying code, are publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.