Secondary infertility among women in their childbearing age is one of sufficient problems in Russia. It is often caused by damage to the basal layer of endometrium when performing gynecological procedures, e.g., dilatation of uterine cavity, diagnostic curettage, cesarean section, uterine surgey, as well as consequences of complicated pregnancies. As a result, hypo-or hypermetriosis may develop, along with intrauterine adhesions (synechiae), leading to the development of Asherman's syndrome. Despite large amounts of medical data, there are no quite effective ways to treat secondary infertility. Currently, various biological polymers and composite materials based on biopolymers with incorporated active molecules, genetic substances, platelet-rich plasma, stem cells or microvesicles/exosomes of stem cells are used with some success for treatment of hypometriosis and Asherman's syndrome. Gel substances based on sodium hyaluronate, carboxymethylcellulose, polyethylene oxide, collagen and others are certified for clinical use. Biopolymer gels serve, on the one hand, as the materials separating the uterine walls (barrier function), and, on the other hand, they work as carriers of biologically active molecules and cells. Biomimetics can stimulate the regeneration and normalization of endometrium at different efficiency rates, thus promoting restoration of reproductive capacity. Biomimetic-based therapies are under investigation. The present review provides data on treatment efficiency of endometrial disorders by means of biotherapeutic approaches.
An increase in the number and volume of surgical interventions leads to an increase in the frequency of postoperative adhesions. The development of the adhesion process in the abdominal cavity causes pain, a decrease in the quality of life of patients, a violation of the reproductive function of women as well as acute adhesion intestinal obstruction. Recently, polymer biomaterials, including those based on chitosan, have been widely used for the prevention of adhesions. Due to their biocompatibility and biodegradation ability, they do not require repeated operations to extract the material. It is believed that these materials act as barriers, physically separating the damaged surfaces. The molecular mechanism of their action is still poorly understood. In this review, the main mechanisms of adhesion formation, as well as ways to prevent them with the help of materials based on chitosan and its derivatives, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.