Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.
Objective. The aim of the current study was to investigate the expression of genes encoded homeobox proteins such as MEIS3 (Meis homeobox 3), SPAG4 (sperm associated antigen 4), LHX1 (LIM homeobox 1), LHX2, and LHX6 in U87 glioma cells in response to glutamine deprivation in control glioma cells and cells with knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), the major pathway of the endoplasmic reticulum stress signaling, for evaluation of a possible dependence on the expression of these important regulatory genes from glutamine supply and ERN1 signaling. Methods. The expression level of MEIS3, SPAG4, LHX, LHX2, and LHX6 genes was studied by real-time quantitative polymerase chain reaction in control U87 glioma cells (transfected by vector) and cells with ERN1 knockdown after exposure to glutamine deprivation. Results. It was shown that the expression level of MEIS3 and LHX1 genes was up-regulated in control glioma cells treated by glutamine deprivation. At the same time, the expression level of three other genes (LHX2, LHX6, and SPAG4) was down-regulated. Furthermore, ERN1 knockdown significantly modified the effect of glutamine deprivation on LHX1 gene expression in glioma cells, but did not change significantly the sensitivity of all other genes expression to this experimental condition. Conclusion. The results of this investigation demonstrate that the exposure of U87 glioma cells under glutamine deprivation significantly affected the expression of all genes studied encoding the homeobox proteins and that this effect of glutamine deprivation was independent of the endoplasmic reticulum stress signaling mediated by ERN1, except LHX1 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.