Intraocular pressure (IOP) initially increases when an individual enters microgravity compared with baseline values when an individual is in a seated position. This has been attributed to a headward fluid shift that increases venous pressures in the head. The change in IOP exceeds changes measured immediately after moving from seated to supine postures on Earth, when a similar fluid shift is produced. Furthermore, central venous and cerebrospinal fluid pressures are at or below supine position levels when measured initially upon entering microgravity, unlike when moving from seated to supine postures on Earth, when these pressures increase. To investigate the effects of altering gravitational forces on the eye, we made ocular measurements on 24 subjects (13 men, 11 women) in the seated, supine, and prone positions in the laboratory, and upon entering microgravity during parabolic flight. IOP in microgravity (16.3 ± 2.7 mmHg) was significantly elevated above values in the seated (11.5 ± 2.0 mmHg) and supine (13.7 ± 3.0 mmHg) positions, and was significantly less than pressure in the prone position (20.3 ± 2.6 mmHg). In all measurements,P< 0.001. Choroidal area was significantly increased in subjects in a microgravity environment (P< 0.007) compared with values from subjects in seated (increase of 0.09 ± 0.1 mm(2)) and supine (increase of 0.06 ± 0.09 mm(2)) positions. IOP results are consistent with the hypothesis that hydrostatic gradients affect IOP, and may explain how IOP can increase beyond supine values in microgravity when central venous and intracranial pressure do not. Understanding gravitational effects on the eye may help develop hypotheses for how microgravity-induced visual changes develop.
Some astronauts are returning from long-duration spaceflight with structural ocular and visual changes. We investigated both the transient and sustained effects of changes in the direction of the gravity vector acting on the eye using changes in body posture. Intraocular pressure (IOP; measured by Perkins tonometer), ocular geometry (axial length, corneal thickness, and aqueous depth-noncontact biometer), and the choroid (volume and subfoveal thickness optical coherence tomography) were measured in 10 subjects (5 males and 5 females). Measures were taken over the course of 60 min and analyzed with repeated-measures analysis of covariance to assess the effects of posture and time. In the supine position, choroidal volume increased significantly with time (average value at <5 min = 8.8 ± 2.3 mm, 60 min = 9.0 ± 2.4 mm, = 0.03). In the prone position, IOP and axial length increased with time (IOP at<5 min 15 ± 2.7 mmHg, 60 min = 19.8 ± 4.1 mmHg, < 0.0001; axial length at <5 min = 24.29 ± 0.77 mm, 60 min = 24.31 ± 0.76 mm, = 0.002). Each increased exponentially, with time constants of 5.3 and 14 min, respectively. Prone corneal thickness also increased with time (<5 min = 528 ± 35 μm, 60 min = 537 ± 35 μm, < 0.001). Aqueous depth was shortened in the prone position (baseline = 3.22 ± 0.31 mm, 60 min = 3.18 ± 0.32 mm, < 0.0001) but did not change with time. The data show that changes in the gravity vector have pronounced transient and sustained effects on the geometry and physiology of the eye. We show that gravity has pronounced transient and sustained effects on the eye by making detailed ocular measurements over 60 min in the supine and prone postures. These data inform our understanding of how gravitational forces can affect ocular structures, which is essential for hypothesizing how ocular changes could occur with microgravity exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.