There is an ongoing, revolutionary transformation occurring across the globe. This transformation is altering established processes, disrupting traditional business models and changing how people live their lives. The power sector is no exception and is going through a radical transformation of its own. Renewable energy, distributed energy sources, electric vehicles, advanced metering and communication infrastructure, management algorithms, energy efficiency programs and new digital solutions drive change in the power sector. These changes are fundamentally altering energy supply chains, shifting geopolitical powers and revising energy landscapes. Underlying infrastructural components are expected to generate enormous amounts of data to support these applications. Facilitating a flow of information coming from the system's components is a prerequisite for applying Artificial Intelligence (AI) solutions in the power sector. New components, data flows and AI techniques will play a key role in demand forecasting, system optimisation, fault detection, predictive maintenance and a whole string of other areas. In this context, digitalisation is becoming one of the most important factors in the power sector's transformation process. Digital solutions possess significant potential in resolving multiple issues across the power supply chain. Considering the growing importance of AI, this paper explores the current status of the technology’s adoption rate in the power sector. The review is conducted by analysing academic literature but also by analysing several hundred companies around the world that are developing and implementing AI solutions on the grid’s edge.
With the aim of improving the environmental sustainability in the field of maritime transport and with special reference to multimodality and 'green' solutions for coastal transport, within the METRO project (Maritime Environment-friendly TRanspOrt systems), funded under the Interreg VA CBC Programme Italy-Croatia, a project of a hybrid Ro-Pax medium range ferry for coastal navigation in the Adriatic area is developed. The paper presents a part of the conceptual design for the assessment of the global hull structure strength, which is not common for this phase of the project, and that is the structural analysis of the complete ship. For this purpose, a detailed computer model of the geometry of the whole ship was made, which includes all primary and basic secondary structural elements, with the aim that such a model can serve later as a good basis for classification and workshop documentation production during contract phase. Additionally, a preliminary calculation of the scantlings of the complete ship was performed according to BV rules and regulations using the MARS2000 software package, with regard to bending and buckling. Loads were modeled according to real conditions for two unfavorable loading conditions, and static linear analysis was performed using the LS-DYNA software package. The global analysis of bending strength in still water could reveal problematic areas in the structure.
This paper presents results from numerical analysis of the fluid and structure interaction of two different hydrofoil models, Model 1 and Model 2. Analyzes were performed with stainless steel, aluminium and composite materials for Model 1, and Model 2 was created from composite with aluminium reinforcement. Models were analyzed for three different angles of attack (10, 20, 30 degrees) and for each angle three different speeds were tested (2, 4, 6 m/s). At first, the whole set of analysis was run for entirely submerged hydrofoils and later on for immersed hydrofoils to the draft h. Described numerical analysis was performed in order to adjust stiffens of hydrofoils based on different operational loads. Two-way fluid-structure interaction analysis was used which combines FEM and CFD solvers. Presented results are based on 44 analysis with which all planned conditions of hydrofoil operation were tested. Numerical analysis showed a correlation between stiffens of material i.e. structural response and hydrodynamic loading. Besides mentioned, based on analysis of Model 2 future prediction are given in a way of hydrofoil design or particularly placement for hydrofoils reinforcement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.