This research evaluated soil amendments designed to enhance the adsorption and biodegradation of explosives at military training facilities, thus minimizing their potential for transport to subsurface environments. Several carbon cosubstrates were tested in soil slurries for their ability to stimulate the biodegradation of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (royal demolition exposive [RDX]), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high-melting explosive [HMX]) by indigenous soil microorganisms. Crude soybean oil and molasses stimulated mineralization of RDX (30-40%) and HMX (approximately 10%). The TNT was not significantly mineralized in any of the treatments, but high-performance liquid chromatography (HPLC) analysis indicated extensive transformation of TNT to amino-containing compounds. The biodegradation of explosives was then examined in unsaturated soil microcosms amended with crude soybean oil and molasses combined with sphagnum peat moss and sawdust. Minimal TNT mineralization was observed, and HMX mineralization was only observed with molasses addition. In contrast, RDX mineralization was extensive in microcosms amended with soybean oil or molasses. The presence of peat moss decreased soybean oil-stimulated RDX mineralization by approximately 5%, but resulted in about 5% greater RDX mineralization compared with molasses only. Sawdust markedly decreased mineralization regardless of cosubstrate type. Mass balance results indicated that the formation of bound residues likely was occurring, especially for TNT. These results indicate that the application of inexpensive adsorbents and cosubstrates to soils may significantly improve the protection of groundwater resources underlying live fire ranges.
The primary objective of the present study was to develop inexpensive soil amendments that can be applied to enhance the adsorption of energetic compounds on military training ranges, thus limiting the potential for these compounds to migrate to groundwater. Adsorption and desorption isotherms were determined for 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with a wide variety of natural and man-made adsorbents, including wheat straw, sawdust, peat moss, ground rubber tires, and clays. Among the various adsorbents tested, peat moss proved to be the most effective sorbent for the three explosives. The adsorption coefficients (Kd(s)) for TNT and RDX with peat (310 and 87 L/kg, respectively) were at least two orders of magnitude higher than that determined for adsorption of these energetics with two surface soils. The adsorption-desorption isotherms for the explosives showed considerable hysteresis (Kd(s) < Kd(d)) with some of the solid adsorbents, suggesting that the sorption process is not readily reversible but, rather, that some fraction of the adsorbed contaminant is either irreversibly bound or present as a slowly desorbed fraction. The data indicate that the application of specific adsorbents to soils at military impact ranges may significantly improve the protection of local groundwater resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.