These experiments tested the hypothesis that a relatively short duration of controlled mechanical ventilation (MV) will impair diaphragmatic maximal specific force generation (specific P(o)) and that this force deficit will be exacerbated with increased time on the ventilator. To test this postulate, adult Sprague-Dawley rats were randomly divided into one of six experimental groups: 1) control (n = 12); 2) 12 h of MV (n = 4); 3) 18 h of MV (n = 4); 4) 18 h of anesthesia and spontaneous breathing (n = 4); 5) 24 h of MV (n = 7); and 6) 24 h of anesthesia and spontaneous breathing (n = 4). MV animals were anesthetized, tracheostomized, and ventilated with room air. Animals in the control group were acutely anesthetized but were not exposed to MV. Animals in two spontaneous breathing groups were anesthetized and breathed spontaneously for either 18 or 24 h. No differences (P > 0.05) existed in diaphragmatic specific P(o) between control and the two spontaneous breathing groups. In contrast, compared with control, all durations of MV resulted in a reduction (P < 0.05) in diaphragmatic specific tension at stimulation frequencies ranging from 15 to 160 Hz. Furthermore, the MV-induced decrease in diaphragmatic specific P(o) was time dependent, with specific P(o) being approximately 18 and approximately 46% lower (P < 0.05) in animals mechanically ventilated for 12 and 24 h, respectively. These data support the hypothesis that relatively short-term MV impairs diaphragmatic contractile function and that the magnitude of MV-induced force deficit increases with time on the ventilator.
Prolonged mechanical ventilation results in diaphragmatic oxidative injury, elevated proteolysis, fiber atrophy, and reduced forcegenerating capacity. We tested the hypothesis that antioxidant infusion during mechanical ventilation would function as an antioxidant to maintain redox balance within diaphragm muscle fibers and therefore prevent oxidative stress and subsequent proteolysis and contractile dysfunction. Sprague-Dawley rats were anesthetized, tracheostomized, and mechanically ventilated with 21% O 2 for 12 hours. The antioxidant Trolox was intravenously infused in a subset of ventilated animals. Compared with acutely anesthetized, nonventilated control animals, mechanical ventilation resulted in a significant reduction (-17%) in diaphragmatic maximal tetanic force. Importantly, Trolox completely attenuated this mechanical ventilation-induced diaphragmatic contractile deficit. Total diaphragmatic proteolysis was increased 105% in mechanical ventilation animals compared with controls. In contrast, diaphragmatic proteolysis did not differ between controls and mechanical ventilation-Trolox animals. Moreover, 20S proteasome activity in the diaphragm was elevated in the mechanical ventilation animals (ϩ76%); Trolox treatment attenuated this mechanical ventilationinduced rise in protease activity. These results are consistent with the hypothesis that mechanical ventilation-induced oxidative stress is an important factor regulating mechanical ventilation-induced diaphragmatic proteolysis and contractile dysfunction. Our findings suggest that antioxidant therapy could be beneficial during prolonged mechanical ventilation.
Prolonged mechanical ventilation (MV) results in oxidative damage in the diaphragm; however, it is unclear whether this MV-induced oxidative injury occurs rapidly or develops slowly over time. Furthermore, it is unknown whether both soluble (cytosolic) and insoluble (myofibrillar) proteins are equally susceptible to oxidation during MV. These experiments tested two hypotheses: 1) MV-induced oxidative injury in the diaphragm occurs within the first 6 h after the initiation of MV; and 2) MV is associated with oxidative modification of both soluble and insoluble proteins. Adult Sprague-Dawley rats were randomly divided into one of seven experimental groups: 1) control ( n = 8); 2) 3-h MV ( n = 8); 3) 6-h MV ( n = 6); 4) 18-h MV ( n = 8); 5) 3-h anesthesia-spontaneous breathing ( n = 8); 6) 6-h anesthesia-spontaneous breathing ( n = 6); and 7) 18-h anesthesia-spontaneous breathing ( n = 8). Markers of oxidative injury in the diaphragm included the measurement of reactive (protein) carbonyl derivatives (RCD) and total lipid hydroperoxides. Three hours of MV did not result in oxidative injury in the diaphragm. In contrast, both 6 and 18 h of MV promoted oxidative injury in the diaphragm, as indicated by increases in both protein RCD and lipid hydroperoxides. Electrophoretic separation of soluble and insoluble proteins indicated that the MV-induced accumulation of RCD was limited to insoluble proteins with molecular masses of ∼200, 120, 80, and 40 kDa. We conclude that MV results in a rapid onset of oxidative injury in the diaphragm and that insoluble proteins are primary targets of MV-induced protein oxidation.
Prolonged mechanical ventilation results in diaphragmatic atrophy and contractile dysfunction in animals. We hypothesized that mechanical ventilation-induced diaphragmatic atrophy is associated with decreased synthesis of both mixed muscle protein and myosin heavy chain protein in the diaphragm. To test this postulate, adult rats were mechanically ventilated for 6, 12, or 18 hours and diaphragmatic protein synthesis was measured in vivo. Six hours of mechanical ventilation resulted in a 30% decrease (p < 0.05) in the rate of mixed muscle protein synthesis and a 65% decrease (p < 0.05) in the rate of myosin heavy chain protein synthesis; this depression in diaphragmatic protein synthesis persisted throughout 18 hours of mechanical ventilation. Real-time polymerase chain reaction analyses revealed that mechanical ventilation, in comparison with time-matched controls, did not alter diaphragmatic levels of Type I and IIx myosin heavy chain messenger ribonucleic acid levels in the diaphragm. These data support the hypothesis that mechanical ventilation results in a decrease in both mixed muscle protein and myosin heavy chain protein synthesis in the diaphragm. Further, the decline in myosin heavy chain protein synthesis does not appear to be associated with a decrease in myosin heavy chain messenger ribonucleic acid.
Nuclear factor-kappaB (NF-kappaB) signaling is necessary for many types of muscle atrophy, yet only some of the required components have been identified. Gene transfer of a dominant negative (d.n.) IKKbeta into rat soleus muscles showed complete inhibition of 7-day disuse-induced activation of a kappaB reporter gene, while overexpression of wild-type (w.t.) IKKbeta did not. Overexpression of a d.n. IKKbeta-EGFP fusion protein showed that atrophy was inhibited by 50%, indicating that IKKbeta is required for the atrophy process. Overexpression of constitutively active (c.a.) IKKbeta-EGFP showed a marked increase in NF-kappaB activity and a decrease in fiber size of weight-bearing soleus muscles, while muscles overexpressing w.t. IKKbeta-HA had no effect. The same results were found for IKKalpha; overexpression of a d.n. form of the protein decreased unloading-induced NF-kappaB activation and inhibited atrophy by 50%, while overexpression of the w.t. protein had no effect. Overexpression of a c.a. IKKalpha-EGFP fusion protein showed that IKKalpha was sufficient to activate NF-kappaB activity and induce fiber atrophy in muscle. Overexpression of d.n. IKKbeta plus d.n. IKKalpha showed an additive effect on the inhibition of disuse atrophy (70%), suggesting that both kinases of the IKK complex are required for muscle atrophy. These data show that both IKKalpha and IKKbeta are necessary and sufficient for physiological muscle atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.