In this study we characterised the development of caecal microbiota in egg laying hens over their commercial production lifespan, from the day of hatching until 60 weeks of age. Using pyrosequencing of V3/V4 variable regions of 16S rRNA genes for microbiota characterisation, we were able to define 4 different stages of caecal microbiota development. The first stage lasted for the first week of life and was characterised by a high prevalence of Enterobacteriaceae (phylum Proteobacteria). The second stage lasted from week 2 to week 4 and was characterised by nearly an absolute dominance of Lachnospiraceae and Ruminococcaceae (both phylum Firmicutes). The third stage lasted from month 2 to month 6 and was characterised by the succession of Firmicutes at the expense of Bacteroidetes. The fourth stage was typical for adult hens in full egg production aged 7 months or more and was characterised by a constant ratio of Bacteroidetes and Firmicutes formed by equal numbers of the representatives of both phyla.
BackgroundThe yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents.Methodology/Principal FindingsTo precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function.Conclusions/SignificanceHypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.