There is an increasing demand for the development of a simple Si-based universal memory device at the nanoscale that operates at high frequencies. Spin-electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents. To overcome this problem, a new approach is presented that uses helical chiral molecules exhibiting spin-selective electron transport, which is called the chiral-induced spin selectivity (CISS) effect. Using the CISS effect, the active memory device is miniaturized for the first time from the micrometer scale to 30 nm in size, and this device presents memristor-like nonlinear logic operation at low voltages under ambient conditions and room temperature. A single nanoparticle, along with Au contacts and chiral molecules, is sufficient to function as a memory device. A single ferromagnetic nanoplatelet is used as a fixed hard magnet combined with Au contacts in which the gold contacts act as soft magnets due to the adsorbed chiral molecules.
The hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH(-) results in the formation of Ba hexaferrite at temperatures as low as 150 degrees C. This low formation temperature enables the synthesis of uniform, ultrafine Ba hexaferrite nanoparticles. These nanoparticles have a disc-like shape, approximately 10 nm wide, but only approximately 3 nm thick. When the temperature of the hydrothermal treatment is increased, large platelet Ba hexaferrite crystals appear as a consequence of secondary re-crystallization (Ostwald ripening). In this work, this undesired process of secondary re-crystallization has been evaluated. We show that the secondary re-crystallization can be totally suppressed with the use of an oleic acid surfactant. The addition of oleic acid enabled the synthesis of uniform, ultrafine nanoparticles at temperatures up to 240 degrees C. The nanoparticles were hydrophobic and could be suspended in nonpolar liquids to form relatively concentrated ferrofluids. Such stable suspensions of hexaferrite nanoparticles will be technologically important, especially as precursors for the preparation of new nanostructured materials, for example nanocomposites or nanostructured ceramic films.
Alignment of nanowires over a large area of flat and patterned substrates is a prerequisite to use their collective properties in devices such as gas sensors. In this work, uniform single-crystalline ultrathin W18 O49 nanowires with diameters less than 2 nm and aspect ratios larger than 100 have been synthesized, and, despite their flexibility, assembled into thin films with high orientational order over a macroscopic area by the Langmuir-Blodgett technique. Alignment of the tungsten oxide nanowires was also possible on top of sensor substrates equipped with electrodes. Such sensor devices were found to exhibit outstanding sensitivity to H2 at room temperature.
Defect engineering operated on metal oxides by chemical and structural modifications may strongly affect properties suitable for various applications such as photoelectrochemical behaviour, charge transport and luminescence. In this work we report the tuneable optical features observed in undoped monoclinic HfO 2 nanocrystals and their dependence on the structural properties of the material at the nanoscale. Transmission electron microscopy together with X-ray diffraction and surface area measurements were used to determine the fine structural modifications, in terms of crystal growth and coalescence of crystalline domains, occurring during a calcination process in the temperature range from 400 to 1000 °C. The fit of the broad optical emission into spectral components, together with time resolved photoluminescence, allowed us to identify the dual nature of the emission at 2.5 eV, where an ultrafast defect-related intrinsic luminescence (with decay time of few ns) overlaps with a slower emission (decay of several µs) due to extrinsic Ti -impurity centres. Moreover, the evolution of intrinsic visible bands during the material transformation was monitored. The relationship between structural parameters uniquely occurring in nanosized materials and the optical properties was investigated and tentatively modelled. The blue emissions at 2.5 and 2.9 eV are clearly related to defects lying at crystal boundaries, while an unprecedented emission at 2.1 eV enables, at relatively low calcination temperatures, the white luminescence of HfO 2 under near-UV excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.