BackgroundCarbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques.ResultsArabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, l-fucose, and l-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions.ConclusionsOur results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0907-0) contains supplementary material, which is available to authorized users.
Most proteins in serum are glycosylated, with several annotated as biomarkers and thus diagnostically important and of interest for their role in disease. Most methods for analyzing serum glycoproteins employ either glycan release or glycopeptide centric mass spectrometry-based approaches, which provide excellent tools for analyzing known glycans but neglect previously undefined or unknown glycosylation and/or other co-occurring modifications. High-resolution native mass spectrometry is a relatively new technique for the analysis of intact glycoproteins, providing a “what you see is what you get” mass profile of a protein, allowing the qualitative and quantitative observation of all modifications present. So far, a disadvantage of this approach has been that it centers mostly on just one specific serum glycoprotein at the time. To address this issue, we introduce an ion-exchange chromatography-based fractionation method capable of isolating and analyzing, in parallel, over 20 serum (glyco)proteins, covering a mass range between 30 and 190 kDa, from 150 μL of serum. Although generating data in parallel for all these 20 proteins, we focus the discussion on the very complex proteoform profiles of four selected proteins, i.e., α-1-antitrypsin, ceruloplasmin, hemopexin, and complement protein C3. Our analyses provide an insight into the extensive proteoform landscape of serum proteins in individual donors, caused by the occurrence of various N - and O -glycans, protein cysteinylation, and co-occurring genetic variants. Moreover, native mass intact mass profiling also provided an edge over alternative approaches revealing the presence of apo- and holo-forms of ceruloplasmin and the endogenous proteolytic processing in plasma of among others complement protein C3. We also applied our approach to a small cohort of serum samples from healthy and diseased individuals. In these, we qualitatively and quantitatively monitored the changes in proteoform profiles of ceruloplasmin and revealed a substantial increase in fucosylation and glycan occupancy in patients with late-stage hepatocellular carcinoma and pancreatic cancer as compared to healthy donor samples.
Fucosidases are associated with several pathological conditions and play an important role in the health of the human gut. For example, fucosidases have been shown to be indicators and/or involved in hepatocellular carcinoma, breast cancer, and helicobacter pylori infections. A prerequisite for the detection and profiling of fucosidases is the formation of a specific covalent linkage between the enzyme of interest and the activity-based probe (ABP). The most commonly used fucosidase ABPs are limited to only one of the classes of fucosidases, the retaining fucosidases. New approaches are needed that allow for the detection of the second class of fucosidases, the inverting type. Here, we report an ortho-quinone methide-based probe with an azide mini-tag that selectively labels both retaining and inverting bacterial α-l-fucosidases. Mass spectrometry-based intact protein and sequence analysis of a probe-labeled bacterial fucosidase revealed almost exclusive single labeling at two specific tryptophan residues outside of the active site. Furthermore, the probe could detect and image extracellular fucosidase activity on the surface of live bacteria.
The Alpha-1-Antitrypsin (A1AT) protein is an important protease inhibitor highly abundant in human serum and other body fluids. Additional to functioning as a protease inhibitor, A1AT is an important acute phase protein. Here, we set out to compare the proteoform profiles of A1AT purified from the human serum and milk of eight healthy donors to determine the origin of human milk A1AT. Following affinity purification, size-exclusion chromatography coupled to native mass spectrometry was used to monitor individual proteoform profiles comparing inter- and intra-donor profiles. The A1AT intra-donor proteoform profiles were found to be highly identical between serum and milk, while they were highly distinct between donors, even when comparing only serum or milk samples. The observed inter-donor proteoform variability was due to differences in the abundances of different N-glycoforms, mainly due to branching, fucosylation, and the relative abundance of N-terminally processed A1AT fragments. From our data we conclude that nearly all A1AT in serum and milk is synthesized by a common source, i.e. the liver, and then secreted into the circulation and enters the mammary gland via diffusion or transport. Thereby, proteoform profile changes, as seen upon infection and/or inflammation in the blood will be reflected in the milk, which may then be transferred to the breastfed infant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.