ABSTRACT:We studied two related families (HHH013 and HHH015) with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, a disorder of the urea cycle and ornithine degradation pathway, who have the same novel ornithine transporter (ORNT1) genotype (T32R) but a variable phenotype. Both HHH015 patients are doing well in school and are clinically stable; conversely, the three affected HHH013 siblings had academic difficulties and one suffered recurrent episodes of hyperammonemia and ultimately died. Overexpression studies revealed that the product of the ORNT1-T32R allele has residual function. Ornithine transport studies in HHH015 fibroblasts, however, showed basal activity similar to fibroblasts carrying nonfunctional ORNT1 alleles. We also examined two potential modifying factors, the ORNT2 gene and the mitochondrial DNA lineage (haplogroup). Haplogroups, associated with specific diseases, are hypothesized to influence mitochondrial function. Results demonstrated that both HHH015 patients are heterozygous for an ORNT2 gain of function polymorphism and belong to haplogroup A whereas the HHH013 siblings carry the wild-type ORNT2 and are haplogroup H. These observations suggest that the ORNT1 genotype cannot predict the phenotype of HHH patients. The reason for the phenotypic variability is unknown, but factors such as redundant transporters and mitochondrial lineage may contribute to the neuropathophysiology of HHH patients. T he HHH syndrome (OMIM #238970) is an autosomal recessive disorder of the urea cycle and ornithine degradation pathway caused by the deficient transport of ornithine across the inner mitochondrial membrane (1,2). The gene defective in HHH syndrome is the mitochondrial ornithine transporter (ORNT1) that is localized in the q14.1 region of Ch13 and is a member of the MCF of proteins that includes the uncoupling protein, carnitine/acyl-carnitine translocase, and the ADP/ATP transporter (3,4). The human ORNT1 gene is expressed in the periportal hepatocytes, which contain the urea cycle pathway, and in the pericentral hepatocytes and skin fibroblasts that express the ornithine degradation pathway (1,2). Physiologically, ORNT1 allows ornithine to serve as a substrate for the ornithine transcarbamylase (OTC) and ornithine amino transferase (OAT) reactions that produce citrulline and the two amino acids, glutamate and proline. In vitro studies have demonstrated that ORNT1 transports ornithine, lysine, and arginine across the inner mitochondrial membrane in exchange for a hydrogen ion and citrulline (5).Biochemically, HHH syndrome is characterized by persistent elevation of plasma ornithine, episodic or postprandial hyperammonemia, and the urinary excretion of homocitrulline and orotic acid (1). The homocitrulline is believed to be the product of transcarbamoylation of lysine whereas the orotic aciduria occurs secondary to decreased OTC activity. Numerous studies have clearly demonstrated a link between hyperammonemia and CNS pathology in urea cycle disorders. However, little is known ...
In developing countries, limited resources and low health budgets result in slow developments in the field of cardiac surgery. As a consequence, advances in surgery become a challenging process. In Colombia, most institutions do not have the capacity or infrastructure for minimally invasive and video-assisted cardiac surgery, let alone robotic assisted cardiac surgery (RACS). Despite the challenges, efforts to overcome these hurdles are critical for the future of cardiac surgery in low-income settings. Here we describe the first cases of robotic cardiac surgeries performed in Colombia.
Leiomyomatosis is a uterine condition that can rarely present with extrauterine involvement. Intravenous and intracardiac extensions are extremely rare presentations and, in these cases, the intra-cardiac mass may be confused with a cardiac myxoma and can be associated with pulmonary embolism. Here we report two cases of successful surgically removed intracardiac leiomyomas under cardiopulmonary bypass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.