With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications.
A critical materials challenge over the next quarter century is the sustainable use and management of the world's natural resources, particularly the scarcest of them. Chemistry's ability to get more from less is epitomized by porous coordination polymers, also known as metal-organic frameworks (MOFs), which use a minimum amount of material to build maximum surface areas with fine control over pore size. Their large specific surface area and tunable porosity make MOFs useful for applications including small-molecule sensing, separation, catalysis, and storage and release of molecules of interest. Proof-of-concept projects have demonstrated their potential for environmental applications such as carbon separation and capture, water purification, carcinogen sequestration, byproduct separation, and resource recovery. To translate these from the laboratory into devices for actual use, however, will require synthesis of MOFs with new functionality and structure. This Account summarizes recent progress in the use of nano- and microparticles to control the function, location, and 3D structure of MOFs during MOF self-assembly, creating novel, hybrid, multifunctional, ultraporous materials as a first step towards creating MOF-based devices. The use of preformed ceramic, metallic, semiconductive, or polymeric particles allows the particle preparation process to be completely independent of the MOF synthesis, incorporating nucleating, luminescent, magnetic, catalytic, or templating particles into the MOF structure. We discuss success in combining functional nanoparticles and porous crystals for applications including molecular sieve detectors, repositionable and highly sensitive sensors, pollutant-sequestering materials, microfluidic microcarriers, drug-delivery materials, separators, and size-selective catalysts. In sections within the Account, we describe how functional particles can be used for (1) heterogeneous nucleation (seeding) of MOFs, (2) preparation of framework composites with novel properties, (3) MOF positioning on a substrate (patterning), and (4) synthesis of MOFs with novel architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.