Semipalmated sandpiper (Calidris pusilla) migration to the Southern Hemisphere includes a 5-day non-stop flight over the Atlantic Ocean, whereas semipalmated plover (Charadrius semipalmatus) migration, to the same area, is largely over land, with stopovers for feeding and rest. We compared the number and 3D morphology of hippocampal astrocytes of Ch. semipalmatus before and after autumnal migration with those of C. pusilla to test the hypothesis that the contrasting migratory flights of these species could differentially shape hippocampal astrocyte number and morphology.We captured individuals from both species in the Bay of Fundy (Canada) and in the coastal region of Bragança (Brazil) and processed their brains for selective GFAP immunolabeling of astrocytes. Hierarchical cluster analysis of astrocyte morphological features distinguished two families of morphological phenotypes, named type I and type II, which were differentially affected after migratory flights. Stereological counts of hippocampal astrocytes demonstrated that the number of astrocytes decreased significantly in C. pusilla, but did not change in Ch. semipalmatus. In addition, C. pusilla and Ch. semipalmatus hippocampal astrocyte morphological features were differentially affected after autumnal migration. We evaluated whether astrocyte morphometric variables were influenced by phylogenetic differences between C. pusilla and Ch. semipalmatus, using phylogenetically independent contrast approach, and phylogenetic trees generated by nuclear and mitochondrial markers. Our findings
The semipalmated sandpiper Calidris pusilla and the spotted sandpiper Actitis macularia are long- and short-distance migrants, respectively. C. pusilla breeds in the sub-arctic and mid-arctic tundra of Canada and Alaska and winters on the north and east coasts of South America. A. macularia breeds in a broad distribution across most of North America from the treeline to the southern United States. It winters in the southern United States, and Central and South America. The autumn migration route of C. pusilla includes a non-stop flight over the Atlantic Ocean, whereas autumn route of A. macularia is largely over land. Because of this difference in their migratory paths and the visuo-spatial recognition tasks involved, we hypothesized that hippocampal volume and neuronal and glial numbers would differ between these two species. A. macularia did not differ from C. pusilla in the total number of hippocampal neurons, but the species had a larger hippocampal formation and more hippocampal microglia. It remains to be investigated whether these differences indicate interspecies differences or neural specializations associated with different strategies of orientation and navigation.
Little is known about environmental influences on radial glia-like (RGL) α cells (radial astrocytes) and their relation to neurogenesis. Because radial glia is involved in adult neurogenesis and astrogenesis, we investigated this association in two migratory shorebird species that complete their autumnal migration using contrasting strategies. Before their flights to South America, the birds stop over at the Bay of Fundy in Canada. From there, the semipalmated sandpiper (Calidris pusilla) crosses the Atlantic Ocean in a non-stop 5-day flight, whereas the semipalmated plover (Charadrius semipalmatus) flies primarily overland with stopovers for rest and feeding. From the hierarchical cluster analysis of multimodal morphometric features, followed by the discriminant analysis, the radial astrocytes were classified into two main morphotypes, Type I and Type II. After migration, we detected differential changes in the morphology of these cells that were more intense in Type I than in Type II in both species. We also compared the number of doublecortin (DCX)-immunolabeled neurons with morphometric features of radial glial–like α cells in the hippocampal V region between C. pusilla and C. semipalmatus before and after autumn migration. Compared to migrating birds, the convex hull surface area of radial astrocytes increased significantly in wintering individuals in both C. semipalmatus and C. pusilla. Although to a different extent we found a strong correlation between the increase in the convex hull surface area and the increase in the total number of DCX immunostained neurons in both species. Despite phylogenetic differences, it is of interest to note that the increased morphological complexity of radial astrocytes in C. semipalmatus coincides with the fact that during the migratory process over the continent, the visuospatial environment changes more intensely than that associated with migration over Atlantic. The migratory flight of the semipalmated plover, with stopovers for feeding and rest, vs. the non-stop flight of the semipalmated sandpiper may differentially affect radial astrocyte morphology and neurogenesis.
Resumo. Mesmo a batuíra bicuda (Charadrius wilsonia) sendo migratória, uma população residente se reproduz na costa nordeste do Brasil e seu status de conservação é descrito como em declínio pela lista vermelha da IUCN. Cães domésticos, mantidos por pescadores para fazer a guarda do material de pesca, são importantes predadores de ninhos de batuíra bicuda na Ilha do Baiacu (Costa Norte do Brasil). Pescadores locais, entretanto, têm motivação a proteger os ninhos e quando assistiram ao vídeo documentando a predação pelos seus cães agiram rapidamente para removê-los. Percebemos que providenciar evidências sobre as causas da predação dos ninhos pode ser uma estratégia eficaz para a conservação das populações de aves. Palavras-chave. Charadrius wilsonia; Cão doméstico; Predação; Batuíra bicuda.Abstract. Although Wilson´s plovers (Charadrius wilsonia) are migratory, a resident population breeds in coastal northeastern Brazil and there population trend is described as decreasing by the IUCN Red List. Domestic dogs are a major predator of Wilson's plover nests on an island in northeastern Brazil where dogs are kept to guard fishing equipment. Local fishermen, however, are motivated to protect the nests of shorebirds and when shown video recordings documenting nest predation acted quickly to remove dogs. We found that providing local residents with evidence about the causes of nest predation could play an effective role in protecting bird populations.
The aim of the present study was to analyze the influence of enriched environment on the distribution of perineuronal nets (PNNs) using a stereogically based unbiased protocol and visual acuity in adult Swiss albino mice that underwent monocular deprivation during the critical period of postnatal development. Eight female Swiss albino mice were monocular deprived on postnatal day 10 and divided into two groups at weaning: standard environment (SE group, n = 4) and enriched environment (EE group, n = 4). After 3 months, all of the mice were subjected to grating visual acuity tests, sacrificed, and perfused with aldehyde fixative. The brains were removed and cut at 70 µm thickness in a vibratome and processed for lectin histochemical staining with Wisteria floribunda agglutinin (WFA). Architectonic limits of area 17 were conspicuously defined by WFA histochemical staining, and the optical fractionator stereological method was applied to estimate the total number of PNNs in the supragranular, granular, and infragranular layers. All groups were compared using Student's t-test at a 95% confidence level. Comparative analysis of the average PNN estimations revealed that the EE group had higher PNNs in the supragranular layer (2726.33 ± 405.416, mean ± standard deviation) compared with the SE group (1543.535 ± 260.686; Student's t-test, p = .0495). No differences were found in the other layers. Visual acuity was significantly lower in the SE group (0.55 cycles/degree) than in the EE group (1.06 cycles/ degree). Our results suggest that the integrity of the specialized extracellular matrix PNNs of the supragranular layer may be essential for normal visual acuity development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.