Dynamic elastic strain in ~1.8and 1.0 m diameter containment vessels containing a high explosive detonation was measured using an array of fiber Bragg gratings. The all-optical method, called real-time localized strain measurement, recorded the strain for 10 ms after detonation with additional measurements being sequentially made at a rate of 1.7 MHz. A swept wavelength laser source provided the repetition rate necessary for such high-speed measurements while also providing enough signal strength and bandwidth to simultaneously measure 8 or more unique points on the vessel’s surface.The data presented here arethen compared with additional diagnostics consisting of a fast spectral interferometer and an optical backscatter reflectometer to show a comparison between the local and global changes in the vessel strain, both dynamically and statically to further characterize the performance of the localized strain measurement.The results are also compared with electrical resistive strain gauges and finite element analysis simulations.
Background In nuclear fuel plates of low-enriched U-10Mo (LEU) clad with aluminum by hot isostatic pressing (HIP), post-irradiation stresses arising during reactor shutdown are a major concern for safe reactor operations. Measurement of those residual stresses has not previously been possible because the high radioactivity of the plates requires handling only by remote manipulation in a hot cell. Objective The incremental slitting method for measuring through-thickness stress profiles was modified, and a system for automated, remote operation was built and tested. Methods Experimental modifications consisted of replacing electric-discharge machining (EDM) with a small end mill and strain-gauge measurements with cantilever displacement measurements. The inverse method used to calculate stresses was the pulse-regularization method modified to allow discontinuities across material interfaces. The new system was validated by comparing with conventional slitting on a depleted U-10Mo (DU) fuel plate. Results The new system was applied to two measurements each on six as-fabricated (pre-irradiation) LEU miniature fuel plates. Variations between the measurements at two locations in the same plate were strongly correlated with measured geometrical heterogeneity in the plate—a tilt in the fuel foil. Compressive stresses in the U-10Mo were shown to increase from 20 to 250 MPa as the ratio of aluminum thickness to U-10Mo thickness increased causing increased constraint during cooling. Faster cooling rates during processing also increased stress magnitudes. Conclusions The measurements trends agreed with data in the literature from similar plates made with DU, which further validates the method. Because other methods are impractical in a hot cell, the modified slitting method is now poised for the first measurements of post-irradiation stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.