The swelling and
collapsing of thermo-responsive poly(
N
-isopropylacrylamide)-based
polymer (pNIPAAm) networks are investigated
in order to reveal the dependency on their kinetics and maximum possible
actuation speed. The pNIPAAm-based network was attached as thin hydrogel
film to lithographically prepared gold nanoparticle arrays to exploit
their localized surface plasmon resonance (LSPR) for rapid local heating.
The same substrate also served for LSPR-based monitoring of the reversible
collapsing and swelling of the pNIPAAm network through its pronounced
refractive index changes. The obtained data reveal signatures of multiple
phases during the volume transition, which are driven by the diffusion
of water molecules into and out of the network structure and by polymer
chain re-arrangement. For the micrometer-thick hydrogel film in the
swollen state, the layer can respond as fast as several milliseconds
depending on the strength of the heating optical pulse and on the
tuning of the ambient temperature with respect to the lower critical
solution temperature of the polymer. Distinct differences in the time
constants of swelling and collapse are observed and attributed to
the dependence of the cooperative diffusion coefficient of polymer
chains on polymer volume fraction. The reported results may provide
guidelines for novel miniature actuator designs and micromachines
that take advantages of the non-reciprocal temperature-induced volume
transitions in thermo-responsive hydrogel materials.
We demonstrate an on-chip, optoelectronic device capable of sampling arbitrary, low-energy, near-infrared waveforms under ambient conditions with sub-optical-cycle resolution. Our detector uses field-driven photoemission from resonant nanoantennas to create attosecond electron bursts that probe the electric field of weak optical waveforms. Using these devices, we sampled the electric fields of ~5 fJ (6.4 MV m-1), few-cycle, near-infrared waveforms using ~50 pJ (0.64 GV m-1) near-infrared driving pulses. Beyond sampling these weak optical waveforms, our measurements directly reveal the localized plasmonic dynamics of the emitting nanoantennas in situ. Applications include broadband time-domain spectroscopy of molecular fingerprints from the visible through the infrared, time-domain analysis of nonlinear phenomena, and detailed investigations of strong-field light-matter interactions.
We design and simulate electrically-connected plasmonic bow-tie nanoantennas integrated onto a Si3N4 waveguide for carrier-envelope-phase detection of few-cycle pulse trains. Our results demonstrate a promising route to waveguide-integrated petahertz electronics for CEP detection and stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.