The existence of a "memory" of the previous crystalline state, which survives melting and enhances re-crystallization kinetics by a self-nucleation process, is wellknown in polymer crystallization studies. Despite being extensively investigated, since the early days of polymer crystallization studies, a complete understanding of melt memory effects is still lacking. In particular, the exact constitution of self-nuclei is still under debate. In this perspective, we provide a comprehensive and critical overview of melt memory effects in polymer crystallization. After the phenomenology of the process and some key concepts are introduced, the main experimental results of the last decades are summarized. Analogies and discrepancies of the melt memory characteristics of different polymeric systems are highlighted. Based on this background, the most significant interpretations and theories of melt memory effects are described; underlining that different interpretations may apply to various specific cases. Recent insights on self-nucleation, gained thanks to a multi-technique approach (combining calorimetry, rheology, infrared and dielectric spectroscopy), are presented. The role of intra/inter-chain segmental contacts in the strength of melt memory effects, and the differences between homopolymers and copolymers behavior, are discussed. Finally, we identify areas where further research in the field is needed to shed light on the longstanding questions regarding the origin of melt memory effects in semi-crystalline polymers.
Poly(butylene succinate-ran-butylene adipate) random copolymers (PBSA) were prepared by melt polycondensation in a wide composition range. Polarized light optical microscopy (PLOM) was employed to observe their superstructural morphology while their thermal and structural properties were studied by differential scanning calorimetry (DSC) and in situ synchrotron Xray diffraction at wide and small angles (WAXS and SAXS). The morphological study revealed negative spherulitic superstructures with (PBS-rich) and without (PBA-rich) ring band patterns depending on composition. The crystallization temperature, melting temperature, and related enthalpies display a pseudoeutectic behavior as a function of composition. WAXS studies demonstrated that these random copolymers are isodimorphic, as their unit cell parameters are composition dependent and switch from PBS-like unit cells to β-PBA-like unit cells around the pseudoeutectic point. For PBA-rich compositions, the inclusion of butylene succinate units in the copolymer selectively promotes the formation of the orthorhombic β-polymorph, instead of the commonly observed monoclinic α-structure. The pseudoeutectic point is located around the 50:50 and 40:60 compositions and is characterized by a remarkable rate-dependent cocrystallization. Parallel DSC, SAXS, and WAXS results for these intermediate compositions show that depending on the cooling rate employed, the materials can exhibit single-or double-crystalline character either upon cooling or during subsequent heating. The structure, morphology, and properties of these versatile random copolymers can be tailored by composition and thermal history.
Isodimorphic random copolyesters are intriguing polymeric materials that can crystallize in their entire composition range, despite the random distribution of comonomer units along their chains. This behavior stems from the relatively similar chemical repeating units of the parent homopolymers. In this feature article, we review our recent works on isodimorphic aliphatic copolyesters, and extract general trends in the framework of the literature. Isodimorphic behavior is a complex phenomenon driven by comonomer partition within the crystalline unit cells formed. These copolyesters crystallize in the entire composition range displaying a pseudo-eutectic behavior when their melting points are plotted as a function of composition. Two crystalline phases, which resembled the crystalline structures of the parent homopolymers, are formed, depending on the considered composition range. The unit cell dimensions of the parent homopolymers change, as a consequence of the inclusion of co-units. At the pseudo eutectic point or pseudo-eutectic region, two crystalline phases can co-exist and their formation strongly depends on thermal history. In this case, double crystalline random copolyesters with two melting points and mixed double-crystalline spherulites can be obtained. The exact composition of the pseudo-eutectic point, the level of comonomer inclusion and the crystallinity degrees cannot be easily predicted by the copolyester chemical structure and composition. These are important issues for further future studies, as well as the quantitative determination of comonomer inclusion in the generated crystalline phases. The extraordinary variation of thermal properties, morphology and crystallinity that isodimorphic random copolyesters display as a function of composition, allows to conveniently tailor their biodegradation, permeability to gases and mechanical properties.
The dissolution of flow-induced nucleation precursors in isotactic polypropylene is investigated indirectly by means of in situ rheo-SAXS measurements. The progress of crystallization and the evolution of crystal orientation are recorded in isothermal conditions after a controlled shear step followed by an annealing step of different duration at various melt temperatures. The results confirm that the survival time of shear-induced nucleation precursors is extremely large compared to typical rheological relaxation times and it is longer for the precursors originated at higher shear rate. Most important, we show that the effect of flow on the development of oriented morphologies is lost much earlier than that on the overall crystallization kinetics. A schematic model for precursors' dissolution involving gradual transformation from row into point-like nuclei is proposed.
Recent developments on the experimental infrastructure and the acquisition of new detectors on the Dutch-Belgian beamline BM26B at the ESRF offer novel and promising possibilities for synchrotron X-ray experiments in the field of polymer crystallization under processing-relevant conditions. In this contribution, some of the most recent experiments mimicking conditions similar to those relevant for the plastics processing industry are discussed. Simultaneous thermal analysis and wide-angle X-ray scattering (WAXS) experiments, at the millisecond time-frame level, on -nucleated isotactic polypropylene (i-PP) samples subjected to ballistic cooling up to 230 K s À1 , show that the efficiency of the nucleating agent can be suppressed when quenched cooling rates higher than 130 K s À1 are used. In situ WAXS experiments using small-scale industrial equipment during a real film blowing process reveal the dependence of the onset of crystallinity (the so-called freeze line) and the crystal orientation as a function of different take-up and blow-up ratios. In situ small-angle X-ray scattering (SAXS) experiments during high-flow fields reveal the formation of shish and kebab structures in i-PP as a function of the imposed stress. Quantitative analysis of i-PP flow-induced structures is presented. The beamline specifications required to obtain high quality and industrially relevant results are also briefly reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.