PFRED a software application for the design, analysis, and visualization of antisense oligonucleotides and siRNA is described. The software provides an intuitive user-interface for scientists to design a library of siRNA or antisense oligonucleotides that target a specific gene of interest. Moreover, the tool facilitates the incorporation of various design criteria that have been shown to be important for stability and potency. PFRED has been made available as an open-source project so the code can be easily modified to address the future needs of the oligonucleotide research community. A compiled version is available for downloading at https://github.com/pfred/pfred-gui/releases/tag/v1.0 as a java Jar file. The source code and the links for downloading the precompiled version can be found at https://github.com/pfred.
Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software. For each material considered, the critical load predicted by the simulated SENB test is used to calculate the mode I fracture toughness. Damage initiates in these models when nodes at the simulated crack tip attain the experimentally measured yield stress. Prediction of fracture processes using a generalized truncated linear traction–separation law (TSL) was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at the fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters.
PFRED a software application for the design, analysis, and visualization of antisense oligonucleotides and siRNA is described. The software provides an intuitive user-interface for scientists to design a library of siRNA or antisense oligonucleotides that target a specific gene of interest. Moreover, the tool facilitates the incorporation of various design criteria that have been shown to be important for stability and potency. PFRED has been made available as an open-source project so the code can be easily modified to address the future needs of the oligonucleotide research community. A compiled version is available for downloading at https://github.com/pfred/pfred-gui/releases as a java Jar file. The source code and the links for downloading the precompiled version can be found at https://github.com/pfred .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.