Hydrodynamic models are useful tools for urban water management. Unfortunately, it is still challenging to obtain accurate results and plausible uncertainty estimates when using these models. In particular, with the currently applied statistical techniques, flow predictions are usually overconfident and biased. In this study, we present a flexible and relatively efficient methodology (i) to obtain more reliable hydrological simulations in terms of coverage of validation data by the uncertainty bands and (ii) to separate prediction uncertainty into its components. Our approach acknowledges that urban drainage predictions are biased. This is mostly due to input errors and structural deficits of the model. We address this issue by describing model bias in a Bayesian framework. The bias becomes an autoregressive term additional to white measurement noise, the only error type accounted for in traditional uncertainty analysis. To allow for bigger discrepancies during wet weather, we make the variance of bias dependent on the input (rainfall) or/and output (runoff) of the system. Specifically, we present a structured approach to select, among five variants, the optimal bias description for a given urban or natural case study. We tested the methodology in a small monitored stormwater system described with a parsimonious model. Our results clearly show that flow simulations are much more reliable when bias is accounted for than when it is neglected. Furthermore, our probabilistic predictions can discriminate between three uncertainty contributions: parametric uncertainty, bias, and measurement errors. In our case study, the best performing bias description is the output-dependent bias using a log-sinh transformation of data and model results. The limitations of the framework presented are some ambiguity due to the subjective choice of priors for bias parameters and its inability to address the causes of model discrepancies. Further research should focus on quantifying and reducing the causes of bias by improving the model structure and propagating input uncertainty
Hydrodynamic models are useful tools for urban water management. Unfortunately, it is still challenging to obtain accurate results and plausible uncertainty estimates when using these models. In particular, with the currently applied statistical techniques, flow predictions are usually overconfident and biased. In this study, we present a flexible and computationally efficient methodology (i) to obtain more reliable hydrological simulations in terms of coverage of validation data by the uncertainty bands and (ii) to separate prediction uncertainty into its components. Our approach acknowledges that urban drainage predictions are biased. This is mostly due to input errors and structural deficits of the model. We address this issue by describing model bias in a Bayesian framework. The bias becomes an autoregressive term additional to white measurement noise, the only error type accounted for in traditional uncertainty analysis in urban hydrology. To allow for bigger discrepancies during wet weather, we make the variance of bias dependent on the input (rainfall) or/and output (runoff) of the system. Specifically, we present a structured approach to select, among five variants, the optimal bias description for a given urban or natural case study. We tested the methodology in a small monitored stormwater system described by means of a parsimonious model. Our results clearly show that flow simulations are much more reliable when bias is accounted for than when it is neglected. Furthermore, our probabilistic predictions can discriminate between three uncertainty contributions: parametric uncertainty, bias (due to input and structural errors), and measurement errors. In our case study, the best performing bias description was the output-dependent bias using a log-sinh transformation of data and model results. The limitations of the framework presented are some ambiguity due to the subjective choice of priors for bias parameters and its inability to directly reduce the causes of bias. More experience with the application of this framework will lead to a greater prior knowledge for a bias formulation. Furthermore, propagation of input uncertainty and improvement to the model structure are expected to reduce the bias
Rainfall input uncertainty is one of the major concerns in hydrological modeling. Unfortunately, during inference, input errors are usually neglected, which can lead to biased parameters and implausible predictions. Rainfall multipliers can reduce this problem but still fail when the observed input (precipitation) has a different temporal pattern from the true one or if the true nonzero input is not detected. In this study, we propose an improved input error model which is able to overcome these challenges and to assess and reduce input uncertainty. We formulate the average precipitation over the watershed as a stochastic input process (SIP) and, together with a model of the hydrosystem, include it in the likelihood function. During statistical inference, we use ''noisy'' input (rainfall) and output (runoff) data to learn about the ''true'' rainfall, model parameters, and runoff. We test the methodology with the rainfall-discharge dynamics of a small urban catchment. To assess its advantages, we compare SIP with simpler methods of describing uncertainty within statistical inference: (i) standard least squares (LS), (ii) bias description (BD), and (iii) rainfall multipliers (RM). We also compare two scenarios: accurate versus inaccurate forcing data. Results show that when inferring the input with SIP and using inaccurate forcing data, the whole-catchment precipitation can still be realistically estimated and thus physical parameters can be ''protected'' from the corrupting impact of input errors. While correcting the output rather than the input, BD inferred similarly unbiased parameters. This is not the case with LS and RM. During validation, SIP also delivers realistic uncertainty intervals for both rainfall and runoff. Thus, the technique presented is a significant step toward better quantifying input uncertainty in hydrological inference. As a next step, SIP will have to be combined with a technique addressing model structure uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.