The Landau–Pekar equations describe the dynamics of a strongly coupled polaron. Here, we provide a class of initial data for which the associated effective Hamiltonian has a uniform spectral gap for all times. For such initial data, this allows us to extend the results on the adiabatic theorem for the Landau–Pekar equations and their derivation from the Fröhlich model obtained in previous works to larger times.
We consider the Pekar functional on a ball in R 3 . We prove uniqueness of minimizers, and a quadratic lower bound in terms of the distance to the minimizer. The latter follows from non-degeneracy of the Hessian at the minimum.
We provide a definition of the effective mass for the classical polaron described by the Landau-Pekar equations. It is based on a novel variational principle, minimizing the energy functional over states with given (initial) velocity. The resulting formula for the polaron's effective mass agrees with the prediction by Landau and Pekar.
We investigate the Fröhlich polaron model on a three-dimensional torus, and give a proof of the second-order quantum corrections to its ground-state energy in the strong-coupling limit. Compared to previous work in the confined case, the translational symmetry (and its breaking in the Pekar approximation) makes the analysis substantially more challenging.
This paper establishes new connections between many-body quantum systems, One-body Reduced Density Matrices Functional Theory (1RDMFT) and Optimal Transport (OT), by interpreting the problem of computing the ground-state energy of a finite dimensional composite quantum system at positive temperature as a non-commutative entropy regularized Optimal Transport problem. We develop a new approach to fully characterize the dual-primal solutions in such non-commutative setting. The mathematical formalism is particularly relevant in quantum chemistry: numerical realizations of the many-electron ground state energy can be computed via a non-commutative version of Sinkhorn algorithm. Our approach allows to prove convergence and robustness of this algorithm, which, to our best knowledge, were unknown even in the two marginal case. Our methods are based on careful a priori estimates in the dual problem, which we believe to be of independent interest. Finally, the above results are extended in 1RDMFT setting, where bosonic or fermionic symmetry conditions are enforced on the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.