Abstract. Despite advances regarding the microbial and organic-molecular impact on nucleation, the formation of dolomite in sedimentary environments is still incompletely understood. Since 1960, apparent dolomite formation has been reported from mud sediments of the shallow, oligohaline and alkaline Lake Neusiedl, Austria. To trace potential dolomite formation or diagenetic alteration processes in its deposits, lake water samples and sediment cores were analyzed with respect to sediment composition, hydrochemistry and bacterial community composition. Sediments comprise 20 cm of homogenous mud with 60 wt % carbonate, which overlies dark-laminated consolidated mud containing 50 wt % carbonate and plant debris. Hydrochemical measurements reveal a shift from oxic lake water with pH 9.0 to anoxic sediment pore water with pH 7.5. A decrease in SO42- with a concomitant increase in ΣH2S and NH4+ from 0 to 15 cm core depth indicates anaerobic heterotrophic decomposition, including sulfate reduction. The bacterial community composition reflects the zonation indicated by the pore water chemistry, with a distinct increase in fermentative taxa below 15 cm core depth. The water column is highly supersaturated with respect to (disordered) dolomite and calcite, whereas saturation indices of both minerals rapidly approach zero in the sediment. Notably, the relative proportions of different authigenic carbonate phases and their stoichiometric compositions remain constant with increasing core depth. Hence, evidence for Ca–Mg carbonate formation or ripening to dolomite is lacking within the sediment of Lake Neusiedl. As a consequence, precipitation of high-magnesium calcite (HMC) and protodolomite does not occur in association with anoxic sediment and sulfate-reducing conditions. Instead, analytical data for Lake Neusiedl suggest that authigenic HMC and protodolomite precipitate from the supersaturated, well-mixed aerobic water column. This observation supports an alternative concept to dolomite formation in anoxic sediments, comprising Ca–Mg carbonate precipitation in the water column under aerobic and alkaline conditions.
<p><strong>Abstract.</strong> Despite advances regarding the microbial and organic-molecular impact on nucleation, the formation of dolomite in sedimentary environments is still incompletely understood. Since 1960, apparent dolomite formation has been reported from mud sediments of the shallow, oligohaline and alkaline Lake Neusiedl, Austria. To trace potential dolomite formation or diagenetic alteration processes in its deposits, lake water samples and sediment cores were analyzed with respect to sediment composition, hydrochemistry and bacterial community composition. Sediments comprise 20&#8201;cm of homogenous mud with 60&#8201;wt&#8201;% carbonate, which overlie dark-laminated consolidated mud containing 50&#8201;wt&#8201;% carbonate and plant debris. Hydrochemical measurements reveal a shift from oxic lake water with pH 9.0 to anoxic sediment pore water with pH 7.5. A decrease in SO<sub>4</sub><sup>2&#8722;</sup> with a concomitant increase of &#931;H<sub>2</sub>S and NH<sub>4</sub><sup>+</sup> from 0&#8211;15&#8201;cm core depth, indicates anaerobic heterotrophic decomposition, including sulfate reduction. The bacterial community composition reflects the zonation indicated by the pore water chemistry, with a distinct increase of fermentative taxa below 15&#8201;cm core depth.</p> <p>The water column is highly supersaturated with respect to (disordered) dolomite and calcite, whereas saturation indices of both minerals rapidly approach zero in the sediment. Notably, the relative proportions of different authigenic carbonate phases and their stoichiometric compositions remain constant with increasing core depth. Hence, evidence for Ca-Mg carbonate formation or ripening to dolomite is lacking within the sediment of Lake Neusiedl. As a consequence, precipitation of high-magnesium-calcite (HMC) and very-high-magnesium-calcite (VHMC) does not occur in association with anoxic sediment and sulfate reducing conditions. Instead, analytical data for Lake Neusiedl suggest that authigenic HMC and VHMC precipitate from the supersaturated, well-mixed aerobic water column. This observation supports an alternative concept to dolomite formation in anoxic sediments, comprising Ca-Mg carbonate precipitation in the water column under aerobic and alkaline conditions.</p>
We provide bacterial 16S rRNA community and hydrochemical data from water and sediments of Lake Neusiedl, Austria. The sediments were retrieved at 5 cm intervals from 30–40 cm push cores. The lake water community was recovered by filtration through a 3.0/0.2 µm filter sandwich. For 16S rRNA gene amplicon-based community profiling, DNA was extracted from the sediment and filters and the bacterial V3-V4 regions were amplified and sequenced using a MiSeq instrument (Illumina). The reads were quality-filtered and processed using open source bioinformatic tools, such as PEAR, cutadapt and VSEARCH. The taxonomy was assigned against the SILVA SSU NR 132 database. The bacterial community structure was visualised in relation to water and porewater chemistry data. The bacterial community in the water column is distinct from the sediment. The most abundant phyla in the sediment shift from Proteobacteria to Chloroflexota (formerly Chloroflexi ). Ammonium and total alkalinity increase while sulphate concentrations in the porewater decrease. The provided data are of interest for studies targeting biogeochemical cycling in lake sediments.
The remote Aldabra Atoll, Seychelles, provides the rare opportunity to study bacterial communities in pristine carbonate sediments across an entire biome. The four sampled sites cover sand with high porewater exchange, bioturbated silt and mud with intermediate exchange, as well as a seasonally and episodically desiccated landlocked pool. As sediments harbour dead cells and environmental DNA alongside live cells, we used bacterial 16S rRNA gene and transcript analysis to distinguish between past and present inhabitants. Previously described laminated sediments mirroring past conditions in the Cerin, France could not be retrieved. Thus, the aim was adjusted to determine whether bacterial community composition and diversity follow typical geochemical zonation patterns at different locations of the atoll. Our data confirm previous observations that diversity decreases with depth. In the lagoon, the bacterial community composition changed from Pseudomonas dominating in the sand to diverse mixed surface and sulphate reduction zones in the anaerobic mud with strongly negative Eh. The latter correlated with high total alkalinity, ammonia, and total sulphide, alongside a decrease in SO42−/Cl− and high relative abundances of sulphate reducing (Halo-) Desulfovibrio, sulphur oxidizing Arcobacteraceae, photo(hetero)troph Cyanobacteria, Alphaproteobacteria, and fermenting Propionigenium. In contrast to expectations, deeper mud and pool sediments harboured high abundances of Halomonas or Alphaproteobacteria alongside high C/N and increased salinity. We believe that this atypical community shift may be driven by a change in the complexity of available organic matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.