Crystallization has been observed in laser-induced cavities in saturated solutions, but the mechanisms behind nucleation of crystals are not entirely clear. A hypothesis is that high solution supersaturation during the bubble growth period triggers the nucleation. Because of small spatiotemporal scales of the cavitation event, the supersaturation is very difficult to measure experimentally. To test the nucleation hypothesis, we perform a two-dimensional axisymmetric direct numerical simulation of an experimentally observed laser-induced cavitation event with crystallization. We demonstrate a significant degree of supersaturation and argue that the nucleation hypothesis is indeed plausible. To analyze factors that lead to a high supersaturation, we develop a comprehensive one-dimensional model for spherical laser-induced cavities. We conduct an extensive investigation on how the solute solubility, solute diffusivity, laser pulse energy, and superheated liquid volume affect the supersaturation. We show that high supersaturation is possible under a range of relevant conditions but not readily obtained for all solutions and laser setups. Guidelines are provided to identify if a specific solution or laser setup may attain high supersaturation. The insights obtained and the numerical methods formulated in this work can be applied to assess and design new laser-induced cavitation setups that allow for precise control of the duration and degree of the supersaturation.
Given their capability of spreading active chemical species and collecting electricity, porous media made of carbon fibers are extensively used as diffusion layers in energy storage systems, such as redox flow batteries. In spite of this, the dispersion dynamics of species inside porous media is still not well understood and often lends itself to different interpretations. Actually, the microscopic design of efficient porous media which can potentially and effectively improve the performances of flow batteries, is a still open challenge. The present study aims to investigate the effect of fibrous media micro-structure on dispersion, in particular the effect of fiber orientation on drag and dispersion dynamics. Several Lattice-Boltzmann simulations of flows through differently-oriented fibrous media coupled with Lagrangian simulations of particle tracers have been performed. Results show that orienting fibers preferentially along the streamwise direction minimizes the drag and maximizes the dispersion, which is the most desirable condition for diffusion layers in flow batteries applications. This article is currently in press on Physics of Fluid journal.
Porous electrodes are pivotal components of Vanadium Redox Flow Batteries, which influence the power density, pressure drop losses, activation overpotentials, limit current density, bulk and contact resistance, and ohmic losses. The quantification of the fluid-mechanic efficiency of porous electrodes is a useful measure, as it is related to the mass transport losses and it affects the overall battery performances. Although several studies, both numerical and experimental, have been devoted to the electrode enhancement, most analyses are carried out under the simplifying assumption of linear, macrohomogeneous and isotropic behavior of the fluid mechanics in the porous material. We present an original approach built on the Lattice-Boltzmann Method and Lagrange Particle Tracking that makes use of pore-scale accurate geometrical data provided by X-ray computed tomography with the aim of studying the dispersion and reaction rates of liquid electrolyte reactants in the flow battery porous electrode. Following this methodology, we compare the fluid-dynamic performances provided by a commonly used carbon felt and an unconventional material, that is, a carbon vitrified foam. Surprisingly, results unveil the possibility of achieving higher fluid-mechanic efficiencies with the foam electrode, whose intrinsic microstructure promotes higher reaction rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.