Additional informationReprints and permissions information is available online at www.nature.com/reprints. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Competing financial interestsThe authors declare no competing financial interests. Europe PMC Funders GroupAuthor Manuscript Nat Clim Chang. Author manuscript; available in PMC 2017 December 01. Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.Natural disturbances, such as fires, insect outbreaks and windthrows, are an integral part of ecosystem dynamics in forests around the globe. They occur as relatively discrete events, and form characteristic regimes of typical disturbance frequencies, sizes and severities over extended spatial and temporal scales1,2. Disturbances disrupt the structure, composition and function of an ecosystem, community or population, and change resource availability or the physical environment3. In doing so, they create heterogeneity on the landscape4, foster diversity across a wide range of guilds and species5,6 and initiate ecosystem renewal or reorganization7,8.Disturbance regimes have changed profoundly in many forest ecosystems in recent years, with climate being a prominent driver of disturbance change9. An increase in disturbance occurrence and severity has been documented over large parts of the globe, for example, for fire10,11, insect outbreaks12,13 and drought14,15. Such alterations of disturbance regimes have the potential to strongly impact the ability of forests to provide ecosystem services to society6. Moreover, a climate-mediated increase in disturbances could exceed the ecological resilience of forests, resulting in lastingly altered ecosystems or shifts to non-forest ecosystems as tipping points are crossed16-18. Consequently, disturbance change is expected to be among the most profound impacts that climate change will have on forest ecosystems in the coming decades19.The ongoing changes in disturbance regimes in combination with their strong and lasting impacts on ecosystems have led to an in...
Tree-ring chronologies were examined to investigate the influence of climate on radial growth of Pinus nigra in southeastern Spain. We addressed whether drought differentially affected the ring-widths of dominant and suppressed trees and if our results supported the hypothesis that, in a Mediterranean climate, suppressed conifer trees suffer greater growth reductions than dominant trees. Climate-growth relationships were analyzed using response and correlation functions, whereas the effect of drought on trees growth was approached by superposed epoch analysis in 10 dry years. A cool, wet autumn and spring, and/or mild winter enhanced radial growth. Latewood was the most sensitive ring section in both kinds of trees and it was primarily influenced by current year precipitations. Earlywood was mostly influenced by climatic conditions previous to the growing season. In general, May was the most influential month. Pinus nigra was shown to be very drought sensitive tree in the study area. Tree-rings in suppressed trees showed lower growth reductions caused by drought than those of dominant trees. However, dominant trees recovered normal growth faster. Dominant trees showed a more plastic response, and suppression appeared to reduce the effect of climate on tree radial growth. Some possible causes for these effects are discussed. Our results support the essential role of the balance between light and moisture limitations for plant development during droughts and show that it is not appropriate to generalize about the way in which suppression affects climate-growth relationship in conifers.
Aim Information about climate stressors on tree growth is needed in order to assess the impacts of global change on forest ecosystems. Broad-scale patterns of climatic limitations on tree growth remain poorly described across eastern North American deciduous forests. We examined the response of broadleaf tree species to climate in relation to their taxonomy, functional traits and geographical location.Location Eastern North America (32-45°N; 70-88°W). MethodsWe used a network of 86 tree-ring width chronologies from eight species that cover a wide range of ecological and climatic conditions. Species were analysed individually or combined according to taxa and wood anatomical functional traits. We identified climate stressors through correlations between growth and climate (from 1916 to 1996). We also explored patterns in the climate responses of these species with two clustering techniques. ResultsWe found strong correlations between water availability and growth for all species. With few exceptions, this drought stress was independent of taxonomy or wood anatomical functional group. Depending on latitude, however, different climatic drivers governed this common drought response. In the cool, northern part of our network, forest growth was most strongly limited by precipitation variability, whereas maximum temperature was a stronger limiting factor than precipitation in the wetter and warmer southern parts.Main conclusions Our study highlights the sensitivity of broadleaf temperate forests to drought stress at annual to decadal scales, with few species-specific differences. The roles of temperature and precipitation on drought-sensitivity differ at opposing ends of our subcontinental-scale network. The impact of future environmental changes on these forests will ultimately depend on the balance between temperature and precipitation changes across this latitudinal gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.