KEYWORDSMicrotensile bond strength; Adhesion; Self-etching; All-in-one adhesives; Failure mode; Technique sensitivity Summary Purpose: To evaluate the technique sensitivity of four different adhesive systems using different air-blowing pressure. . Twenty-four extracted molars were used. After grinding the coronal enamel surface, the teeth were divided into two equal groups. The first group's teeth were randomly assigned for bonding with the different adhesives using gentle air-blowing (g). For the teeth of the second group, the four adhesive systems were applied using strong air-blowing (s). After storage overnight in 37 8C water, the bonded specimens were sectioned into sticks (1 mm! 1 mm wide), which were subjected to microtensile bond strength testing (mTBS) at a crosshead speed of 1 mm/min. The load at failure of each specimen was recorded and the data were analyzed by one-way ANOVA and Tukey HSD tests. The surfaces of the fractured specimens were observed using SEM to determine the failure mode. Results: The results of the mTBS test showed that the highest bond strengths tended to be with SE for both gentle and strong air-blowing, and the significantly lowest for SSB with strong air streaming. Comparing the two techniques, significant differences were noted only for SSB-200 (P!0.05). For each material, the SEM evaluation did not show distinct differences in the nature of the fractures between the two techniques, except for SSB-200. Conclusions: The adhesives tested are not technique sensitive, except SSB-200, with regards to the air-blowing step. Q
This study evaluated the microtensile bond strength and the interfacial morphology of newer adhesives. The occlusal surfaces of extracted teeth were ground flat for random allocation to four equal groups. Resin composite was bonded to each surface using either Clearfil SE Bond [SEB], Clearfil Protect Bond [PB], G-Bond [GB], or an experimental adhesive, SSB-200 [SSB]. After storage for 24 h in water at 37 degrees C, they were sectioned into beams (cross-sectional area 1 mm(2)) for microtensile bond strength testing (muTBS) at a crosshead speed of 1 mm/min. The load at failure of each was recorded; the data were analyzed by one-way ANOVA and Games Howell tests. The surfaces of the fractured specimens were observed using SEM. For the ultra-morphology of the interface, the occlusal surfaces of four more teeth were prepared as before and a thin layer of flowable resin composite was bonded to each surface using one of the four adhesives. The mean muTBS ranged from 39.68 MPa (GB) to 64.97 MPa (SEB). There were no statistical differences between SEB and SSB, or between PB and GB (p > 0.05). The muTBS of SEB and SSB were significantly greater than that of PB and GB (p < 0.05). SEMs of the fractured surfaces revealed a mixed (cohesive/interfacial) failure. TEM examination highlighted differences in the hybrid layer; SEB had a thicker layer than the others. In conclusion, the newer all-in-one adhesives produced a thin hybrid layer but varied in their bond strengths. The 2-step self-etching adhesives do not necessarily produce higher bond strengths than that of the all-in-one systems.
SUMMARYThis study compared the microtensile bond strength (MTBS) of three all-in-one adhesive systems and a two-step system using two types of burs to prepare the dentin surfaces. Flat coronal surfaces of 24 extracted human molars were produced using either regular-grit or superfine-grit diamond burs. Resin composite was then bonded to equal numbers of these surfaces using one of the four adhesives: Clearfil SE Bond (CSE), GBond (GB), SSB-200 (SSB) or Prompt L-Pop (PLP). After storage for 24 hours in 37°C distilled water, the bonded teeth were sectioned into slices (0.7-mm thick) perpendicular to the bonded surface. The specimens were then subjected to microtensile testing and the bond strengths were calculated at failure. Bond strength data were analyzed by two-way ANOVA and the GamesHowell test for interaction between adhesive and type of cut dentin. The fractured surfaces were observed by SEM to determine the failure mode. In addition, to observe the effect of conditioning, equal numbers of the two bur-cut dentin surfaces of eight additional teeth were conditioned with the adhesives and observed by SEM. Based on the results, when CSE and SSB were bonded to dentin cut with a regular-grit diamond bur, the MTBS values were significantly lower than that of superfine bur-cut dentin; whereas, GB and PLP showed no significant differences in MTBS between the two differently cut surfaces. SEM observation of the fractured surfaces revealed a mixed mode (adhesive in some areas and cohesive in others in the same sample) of failure in all specimens except PLP, which showed cohesive failure within the adhesive for both types of bur In some self-etching systems, selecting the proper bur type for cutting dentin is important for improving bond strength. Laboratory Research 318Operative Dentistry preparation. Generally, SEMs of the conditioned surfaces using both types of burs showed partial removal of the smear layer for CSE, minimal for GB and SSB and complete removal for PLP.In conclusion, when cutting dentin, selecting the proper bur type is important for improving the bond strength of some self-etching adhesive systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.