Groundwater quality is a consequence of cumulative effects of natural and anthropogenic processes occurring in unsaturated and saturated zone, which, in certain conditions, can lead to elevated concentrations of chemical substances in groundwater. In this paper, the concept of determining the ambient background value of a chemical substance in groundwater was applied, because the long-term effects of human activity influence the increase in concentrations of substances in the environment. The upper limits of ranges of ambient background values were estimated for targeted chemical substances in four groundwater bodies in the Pannonian region of Croatia, according to the demands of the EU Groundwater Directive. The selected groundwater bodies are typical, according to the aquifer typology, for the Pannonian region of Croatia. Probability plot (PP), the modified Lepeltier method, as well as the simple pre-selection method, were used in this paper, depending on a number of chemical data in analysed data sets and in relation to the proportion of <limit of quantification (LOQ) values in a data set for each groundwater body. Estimates obtained by using PP and the modified Lepeltier method are comparable when data variability is low to moderate, otherwise differences between estimates are notable. These methods should not be used if the proportion of <LOQ values in a data set is higher than 30%; however, the integration of results of both methods can increase the confidence of estimation. If the proportion of <LOQ values is higher than 30%, it is recommended to use the robust pre-selection method with the adequate confidence level. For highly skewed data, the 90th percentile of the pre-selected data set is comparable with other methods and preferable over the 95th percentile. The estimates obtained for inert and mobile substances are comparable on different scales. For highly redox-sensitive substances, estimates may differ by one to two orders of magnitude, in relation to the observed heterogeneity of the aquifer systems. The critical issue in the estimation process is the determination of hydrogeological and geochemical homogeneous units within the heterogeneous aquifer system.
Nitrates present one of the main groundwater contaminants in the world and in the Zagreb aquifer. In order to reduce nitrate concentrations in groundwater, it is necessary to spatially define main nitrogen sources and areas which have the highest risk of nitrate contamination. This paper presents a map of nitrate contamination risk in the area of the Zagreb aquifer. It was constructed based on nine different layers that include natural characteristics and anthropogenic pressures. For the construction of the Main map, which has been defined as the most representative one, 15 different variations have been tested. The Main map has shown that the urban part of the City of Zagreb, especially central and eastern parts, together with the area of Jakuševec landfill and marshalling station, present areas with the highest risk of nitrate contamination, which is consistent with the results of previous research. ARTICLE HISTORY
The physicochemical properties of soil and the unsaturated zone can have a large influence on the infiltration of precipitation into an aquifer. Soil permeability presents soil property that can be very variable. The main objectives of this study were to estimate differences in soil permeability in two dominant types of soils—Fluvisols and Eutric Cambisols—in the area of the Zagreb aquifer and determine the relationship between the physicochemical properties and the permeability of the analyzed soils. For this purpose, the particle size distribution, soil water retention curves (SWRCs), hydraulic parameters, and chemical properties of soils (i.e., electrical conductivity (EC), pH, carbonate content, cation exchange capacity (CEC), and total concentration of zinc (Zn)) from six soil profiles were observed. In general, the results show that Fluvisols have a smaller amount of clay and a higher amount of sand. Furthermore, particle size distribution indicates that Eutric Cambisols have smaller permeability and a slightly higher capacity for retention. In Eutric Cambisols, the percentages of clay, silt, and sand generally do not change with depth. On average, Fluvisols and Eutric Cambisols become impermeable when they reach different values of water content and effective saturation. All results suggest that Fluvisols generally have to desaturate more than Eutric Cambisols to become impermeable. The proportions of sand and Ks increases through the depth of all analyzed soils, while CEC, EC, and Zn decrease. The total Zn generally decrease with depth, which can be attributed to the aerodeposition in the surface horizons of the analyzed soils and their higher availability for binding/sorption elements. Generally, it can be seen that most Zn concentrations increase until 80 cm in depth, after which they decrease. This result indicates that, in these specific locations, the groundwater body is not under the influence of a potentially toxic metal, in this case Zn. Statistical analysis shows a strong correlation between Zn concentrations and some soil properties, such as soil texture and CEC. This may point to the prevalence of Zn retention. Furthermore, statistical results show that silt has a higher influence on the permeability of Eutric Cambisols than Fluvisols.
The investigation area is located in the world-famous Dinaric karst. This study presents a conceptual model of groundwater dynamics and its interaction with surface waters, extending from the natural water retention of the Drežničko Polje to the spring zone on the far side of the Kapela Mountain range, including a description of the regional groundwater flow in the Zagorska Mrežnica spring zone. The aim of this research was to determine the possibility of an artificial enlargement of the natural retention of this karst field. Large amounts of water could be exploited in this way for the existing hydroelectric power plants of Gojak and Lešće on the Donja Dobra River. The prolonged retention of the water wave in the Drežničko Polje would extend its efficiency in regards to the production of electrical energy, and simultaneously achieve the mitigation of floods that frequently occur in the broader area of Ogulin. Photogeological analysis of the area was performed, together with geological and hydrogeological mapping, groundwater tracing, measurements of water flows in streams and springs, exploratory drilling and measurements of water levels in 26 piezometric boreholes in the Drežničko Polje. Available meteorological data from nearby weather stations (Jasenak, Drežnica and Modruš) were exploited, as well as hydrological data collected specifically for the modelling of runoff. Based on the results of the data processing, this study has determined: (1) the dynamics of the groundwater flow from the Drežničko Polje to the spring area of the Zagorska Mrežnica, (2) the dynamics of recharge and discharge of the natural retention of the Drežničko Polje; and (3) an improved interpretation of the Zagorska Mrežnica karst spring dynamics. The obtained results of groundwater flow dynamics indicate typical karst flow conditions in the Dinaric Karst, but also contain some specific features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.