Cada día las organizaciones tienen más información porque sus sistemas producen una gran cantidad de operaciones diarias que se almacenan en bases de datos transaccionales. Con el fin de analizar esta información histórica, una alternativa interesante es implementar un Data Warehouse. Por otro lado, los Data Warehouse no son capaces de realizar un análisis predictivo por sí mismos, pero las técnicas de inteligencia de máquinas se pueden utilizar para clasificar, agrupar y predecir en base a información histórica con el fin de mejorar la calidad del análisis. En este trabajo se describe una arquitectura de Data Warehouse con el fin de realizar un análisis del desempeño académico de los estudiantes. El Data Warehouse es utilizado como entrada de una arquitectura de red neuronal con tal de analizar la información histórica y de tendencia en el tiempo. Los resultados muestran la viabilidad de utilizar un Data Warehouse para el análisis de rendimiento académico y la posibilidad de predecir el número de asignaturas aprobadas por los estudiantes usando solamente su propia información histórica. Palabras clave: Data warehouse, análisis histórico, predicción, redes neuronales, información estratégica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.