It is now well accepted that endogenous morphine is present in animals, both in invertebrates and vertebrates. It is a key signaling molecule that plays an important role in downregulating physiological responses, such as those in the immune system, including immune elements in the CNS. It has been demonstrated that a specific mu-opiate-receptor subtype, mu3, mediates these downregulatory effects through release of NO. This article examines morphine as an endogenous signaling molecule, in terms of its role in neural and immune regulation.
The results of this study lend strong support to the concept of the existence in insects and molluscs of a distinctive class of neuroglial cells comparable to vertebrate microglia. The evidence presented is as valid as that used in reference to the separate status of vertebrate microglia-i.e., the demonstration of a close structural and functional relationship of these cells with cells of the immune system. As in vertebrates, the excision of gala from three invertebrate species (the molluscs Planorbarus corneas and Mytilus edulis and the insect Leucophaea maderae) and their maintenance in incubation media led to an exodus of small cells and their accumulation in the culture dish. During this process, they underwent conformational changes from stellate to rounded, and then to more or less ameboid, comparable to those indicative of the process of activation in the animals' immunocytes. Functional characteristics which these translocated microglia-like cells share with immunocytes are motility, phagocytotic activity, and adherence to the culture dish. Furthermore, the two cells have certain biochemical features in common-e.g., the presence of certain cytokines and (at least in Planorbarius) that of corticotropin. An additional phenomenon of particular interest for the classification of mirogHal elements is their response to morphine. At 10-6 M, this drug decreases not only the number of cells emerging from the excised ganglia but also the degree of their transformation to the "active" ameboid form. This dose-dependent and naloxone-sensitive effect of morphine on microglial cells parallels that on activated immunocyts of the same species. Corre
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.