The paper presents two novel second order conservative Lie-group geometric methods for integration of rigid body rotational dynamics. First proposed algorithm is a fully explicit scheme that exactly conserves spatial angular momentum of a free spinning body. The method is inspired by the Störmer–Verlet integration algorithm for solving ordinary differential equations (ODEs), which is also momentum conservative when dealing with ODEs in linear spaces but loses its conservative properties in a nonlinear regime, such as nonlinear SO(3) rotational group. Then, we proposed an algorithm that is an implicit integration scheme with a direct update in SO(3). The method is algorithmically designed to conserve exactly both of the two “main” motion integrals of a rotational rigid body, i.e., spatial angular momentum of a torque-free body as well as its kinetic energy. As it is shown in the paper, both methods also preserve Lagrangian top integrals of motion in a very good manner, and generally better than some of the most successful conservative schemes to which the proposed methods were compared within the presented numerical examples. The proposed schemes can be easily applied within the integration algorithms of the dynamics of general rigid body systems.
Störmer-Verlet integration scheme has many attractive properties when dealing with ODE systems in linear spaces: it is explicit, 2nd order, linear/angular momentum preserving and it is symplectic for Hamiltonian systems. In this paper we investigate its application for numerical simulation of the multibody system dynamics (MBS) by formulating Störmer-Verlet algorithm for the rotational rigid body motion in Lie-group setting. Starting from the investigations on the single free rigid body rotational dynamics, the paper introduces modified RATTLE integration scheme with the direct SO(3) rotational update. Furthermore, non-canonical Lie-group Störmer-Verlet integration scheme is presented through the different derivation stages. Several presented numerical examples show excellent conservation properties of the proposed geometric algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.