The matrix metalloproteinase (MMP)/matrixin family has been implicated in both normal tissue remodeling and a variety of diseases associated with abnormal turnover of extracellular matrix components. The mechanism by which MMPs catabolize collagen (collagenolysis) is still largely unknown. Substrate flexibility, MMP active sites, and MMP exosites all contribute to collagen degradation. It has recently been demonstrated that the ability to cleave a triple helix (triple-helical peptidase activity) can be distinguished from the ability to cleave collagen (collagenolytic activity). This suggests that the ability to cleave a triple helix is not the limiting factor for collagenolytic activity-the ability to properly orient and potentially destabilize collagen is. For the MMP family, the catalytic domain can unwind and cleave a triple-helical structure, while the C-terminal hemopexin-like domain appears to be responsible for properly orienting collagen and destabilizing it to some degree. It is also possible that exosites within the catalytic and/or C-terminal hemopexin-like domain may exclude some MMPs from cleaving collagen. Overall, it appears that many proteases of distinct mechanisms possess triple-helical peptidase activity, and that convergent evolution led to a few proteases possessing collagenolytic activity. Proper orientation and distortion of the triple helix may be the key factor for collagenolysis.
Numerous approaches have been described for modifying biomaterials to incorporate extracellular matrix components. "Peptide-amphiphiles", whereby monoalkyl hydrocarbon chains are covalently linked to peptide sequences, have been shown previously to (a) form specific molecular architecture with enhanced stability and (b) promote cell adhesion, spreading, and signaling. The present study has examined the use of chimeric peptide-amphiphiles for inducing protein-like structures and peptide-amphiphile mixtures for enhancing surface bioactivity. The alpha-helical propensity of a 21 residue peptide, incorporating the SPARC(119-122) angiogenesis-inducing sequence and either unmodified or acylated with a C(6), C(10), C(14), C(16), C(18), C(18:1), or C(18:1-OH) monoalkyl hydrocarbon chain, has been examined. Peptide and peptide-amphiphile structures were characterized by circular dichroism and one- and two-dimensional NMR spectroscopic techniques. The 21 residue peptide alone does not form a distinct structure in solution, whereas N-terminal acylation by monoalkyl hydrocarbon chains results in the 21 residue peptide-amphiphile adopting a predominantly alpha-helical structure in solution. The thermal stability of the alpha-helix increases with increasing hydrocarbon chain length. The SPARC(119-122) peptide-amphiphiles were then screened for promotion of endothelial cell adhesion and spreading. The greatest activity was achieved by using a mixture of the alpha-helical SPARC(119-122) peptide-amphiphile, a triple-helical peptide-amphiphile incorporating the alpha2beta1 integrin binding site from type I collagen, and a pseudolipid. The pseudolipid is most likely required for a spatial distribution of the peptide-amphiphiles that allows for optimal cellular interactions. Overall, we have found that incorporation of bioactive sequences within peptide-amphiphiles results in the induction of an ordered structure of the bioactive sequence and that mixtures of peptide-amphiphiles can be used to promote endothelial cell behaviors comparable to extracellular matrix components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.