Water scarcity threatens more and more people in the world. Moisture adsorption from the atmosphere represents a promising avenue to provide fresh water. Nanoporous sponges ("NPSs" ), new carbon-based sorbents synthesized from the pyrolysis of resorcinol-formaldehyde resin, can achieve comparable performance to metal organic framework-based systems, but at a significantly lower cost. Oxygen and nitrogen functionalities can be added to the NPS surface, through oxidation and addition of phenanthroline to the initial reagent mixture, respectively. The resulting NPS sorbents have high specific surface areas of 347 to 527 m 2 •g −1 and an average capillary-condensation-compatible pore size of 1.5 nm. When oxidized, the NPS can capture up to 0.28 g of water per gram of adsorbent at a relative pressure of 0.90 (0.14 g•g −1 at P/P sat = 0.40) and maintain this adsorption capacity over multiple adsorption/desorption cycles. Scaled-up synthesis of the NPS was performed and tested in an experimental water capture setup, showing good agreement between small-and larger-scale adsorption properties. Water adsorption isotherms fitted with the theoretical model proposed by Do and Do demonstrate that hydroxyl functionalities are of key importance to NPS behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.