This paper presents the atmospheric characterization of three large, gaseous planets: WASP-127 b, WASP-79 b, and WASP-62 b. We analyzed spectroscopic data obtained with the G141 grism (1.088-1.68 μm) of the Wide Field Camera 3 on board the Hubble Space Telescope using the Iraclis pipeline and the TauREx3 retrieval code, both of which are publicly available. For WASP-127 b, which is the least dense planet discovered so far and is located in the shortperiod Neptune desert, our retrieval results found strong water absorption corresponding to an abundance of log(H 2 O)=−2.71-+ 1.05 0.78 and absorption compatible with an iron hydride abundance of log(FeH)=-+ 5.25 1.10 0.88 , with an extended cloudy atmosphere. We also detected water vapor in the atmospheres of WASP-79 b and WASP-62 b, with best-fit models indicating the presence of iron hydride, too. We used the Atmospheric Detectability Index as well as Bayesian log evidence to quantify the strength of the detection and compared our results to the hot Jupiter population study by Tsiaras et al. While all the planets studied here are suitable targets for characterization with upcoming facilities such as the James Webb Space Telescope and Ariel, WASP-127 b is of particular interest due to its low density, and a thorough atmospheric study would develop our understanding of planet formation and migration. Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet atmospheres (487); Astronomy data analysis (1858); Hubble Space Telescope (761)
We analyze the transmission and emission spectra of the ultra-hot Jupiter WASP-76 b, observed with the G141 grism of the Hubble Space Telescope's (HST) Wide Field Camera 3 (WFC3). We reduce and fit the raw data for each observation using the open-source software Iraclis before performing a fully Bayesian retrieval using the publicly available analysis suite TauREx 3. Previous studies of the WFC3 transmission spectra of WASP-76 b found hints of titanium oxide (TiO) and vanadium oxide (VO) or non-gray clouds. Accounting for a fainter stellar companion to WASP-76, we reanalyze this data and show that removing the effects of this background star changes the slope of the spectrum, resulting in these visible absorbers no longer being detected, eliminating the need for a non-gray cloud model to adequately fit the data but maintaining the strong water feature previously seen. However, our analysis of the emission spectrum suggests the presence of TiO and an atmospheric thermal inversion, along with a significant amount of water. Given the brightness of the host star and the size of the atmospheric features, WASP-76 b is an excellent target for further characterization with HST, or with future facilities, to better understand the nature of its atmosphere, to confirm the presence of TiO and to search for other optical absorbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.