Head and neck squamous cell carcinoma (HNSCC) is a malignancy with a worldwide distribution. Although intensive studies have been made, the underlying oncogenic mechanism of HNSCC requires further investigation. In this study, we examined the oncogenic role of activated Cdc42‐associated kinase 1 (ACK1), an oncogenic tyrosine kinase, in regulating the proliferation of HNSCC cells and its underlying molecular mechanism. Results from immunohistochemical studies revealed that ACK1 was highly expressed in HNSCC tumors, with 77% (77/100) of tumors showing a high ACK1 immunoreactivity compared to 40% (8/20) of normal mucosa. Knockdown of ACK1 expression in HNSCC cells resulted in elevated p27 expression, reduced cell proliferation, and G1‐phase cell cycle arrest. Rescue of ACK1 expression in the ACK1‐knockdown cells suppressed p27 expression and restored cell proliferation. Compared to ACK1‐knockdown cells, ACK1‐rescued cells exhibited a restored p27 expression after MG132 treatment and showed an elevated level of ubiquitinated p27. Our data further showed that knockdown of ubiquitin ligase Skp2 resulted in elevated p27 expression. Importantly, the expression of p27(WT), p27(Y74F), or p27(Y89F) in ACK1‐overexpressed 293T cells or ACK1‐rescued SAS cells showed higher levels of tyrosyl‐phosphorylated p27 and interaction with ACK1 or Skp2. However, the expression of p27(Y88F) mutant exhibited a relatively low phosphorylation level and barely bound with ACK1 or Skp2, showing a basal interaction as the control cells. These results suggested that ACK1 is highly expressed in HNSCC tumors and functions to promote cell proliferation by the phosphorylation and degradation of p27 in the Skp2‐mediated mechanism.
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein overexpressed in human malignancies, including prostate cancer (PCa). In this study, we aimed to explore the oncogenic function of CIP2A in PCa cells and its underlying mechanism. We showed that 63.3% (38/60 cases) of PCa tissues exhibited a high CIP2A immunostaining, compared to 25% (3/12 cases) of BPH samples. Furthermore, CIP2A expression was positively correlated with patients’ short survival time and nuclear AR levels in PCa tissues. Compared to PZ-HPV-7, an immortalized prostate cell line, androgen-sensitive LNCaP C-33, androgen-independent LNCaP C-81, or 22Rv1 cells exhibited a high CIP2A expression, associated with high AR expression and phosphorylation. While AR expression and activity modulated CIP2A expression, manipulating CIP2A expression in PCa cells regulated their AR expression and proliferation. The reduction of CIP2A expression also enhanced the sensitivity of PCa cells toward Enzalutamide treatment. Our data further showed that depletion of polo-kinase 1 (PLK1) expression or activity in C-81 or 22Rv1 cells caused reduced expression of c-Myc and AR. Notably, inhibition of PLK1 activity could abolish CIP2A-promoted expressions in c-Myc, AR, and prostate-specific antigen (PSA) in C-33 cells under an androgen-deprived condition, suggesting the role of PLK1 activity in CIP2A-promoted AR expression. In summary, our data showed the existence of a novel regulation between CIP2A and AR expression, which is critical for promoting PCa malignancy. Thus, CIP2A could serve as a therapeutic target for PCa.
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein overexpressed in human malignancies, including prostate cancer (PCa). In this study, we aimed to explore the oncogenic function of CIP2A in PCa cells and its underlying mechanism. We showed that 63.3% (38/60 cases) of PCa tissues exhibited a high CIP2A immunostaining, compared to 25% (3/12 cases) of BPH samples (p = 0.023). Furthermore, the protein level of CIP2A was positively correlated with patients’ short survival time and nuclear AR levels in PCa tissues. Compared to PZ-HPV-7, an immortalized prostate cell line, androgen-sensitive LNCaP C-33, androgen-independent LNCaP C-81, or 22Rv1 cells exhibited a high CIP2A level, associated with high protein and phosphorylation levels of AR. While AR expression and activity modulated CIP2A expression, manipulating CIP2A expression in PCa cells regulated their AR protein levels and proliferation. The reduction of CIP2A expression also enhanced the sensitivity of PCa cells toward Enzalutamide treatment. Our data further showed that depletion of polo-kinase 1 (PLK1) expression or activity in C-81 or 22Rv1 cells caused reduced protein levels of c-Myc and AR. Notably, inhibition of PLK1 activity could abolish CIP2A-promoted expressions in c-Myc, AR, and prostate-specific antigen (PSA) in C-33 cells under an androgen-deprived condition, suggesting the role of PLK1 activity in CIP2A-promoted AR expression. In summary, our data showed the existence of a novel regulation between CIP2A and AR protein levels, which is critical for promoting PCa malignancy. Thus, CIP2A could serve as a therapeutic target for PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.