Severe periodontitis, a destructive inflammatory disease of the supporting tissues of the teeth, ranks sixth in terms of global spread, affecting about 11% of the population. Metalloproteinases (MMPs) are extracellular matrix (ECM) macromolecules that are important in cellular development and morphogenesis, and they are capable of activating growth factors in their proximity, cell surface receptors, and adhesion molecules. MMPs are part of a major family of zinc-dependent endopeptidases, and their activity is modulated and regulated by certain inhibitors known as tissue metalloproteinase inhibitors (TIMPs). Because type I collagen is the major component of the periodontal extracellular matrix, special attention has been paid to the role of collagenases, especially MMP-8 and MMP-13 and gelatinases, MMP-2 and MMP-9, in periodontal diseases. In fact, MMP-8 (or collagenase 2) is currently one of the most promising biomarkers for periodontitis in oral fluids. Among them, salivary MMP-9 has been shown to be a more sensitive marker for periodontal inflammation during orthodontic treatment, which opens new perspectives in reducing periodontal hazards during such treatments. Both MMP-8 and MMP-9 are extremely valuable diagnostic tools in treating periodontitis, and future studies and healthcare policies should focus on implementing more accessible methods of chairside testing in order to reduce the prevalence of this disease.
Dentists and dental staff have an increased risk of airborne infection with pathogens such as SARS-CoV-2 since they are exposed to high levels of droplets and aerosols produced during specific dental procedures. Hence, new guidelines such as patient screening and temperature control, air purification, space, surface and hand sanitizing and the use of protective equipment and physical barriers have been successfully implemented. In addition, the use of teledentistry has expanded considerably in pediatric dentistry, orthodontics, oral medicine and periodontics in order to address oral and dental health issues during the COVID-19 pandemic while minimizing virus transmission. Thus, teleconsultation, telediagnosis, teletriage, teletreatment and telemonitoring have emerged as valuable tools not only in the delivery of care, but also in the academic and research training of dental health professionals. This narrative review summarizes the current literature on the impact of the pandemic on dental care, dental staff and dental education, with an emphasis on how newly emerging protocols and technologies can be successfully utilized as integral parts of various branches of the dental practice and their future implications without compromising patient care.
Neoplasia occurs as a result of genetic mutations. Research evaluating the association between gene mutations and skin cancer is limited and has produced inconsistent results. There are no established guidelines for screening skin cancer at molecular level. It should also be noted that the combinations of some mutations may play a role in skin tumors’ biology and immune response. There are three major types of skin cancer, and the originality of this study comes from its approach of each of them.
Periodontal disease is a frequent pathology worldwide, with a constantly increasing prevalence. For the optimal management of periodontal disease, there is a need to take advantage of actual technology to understand the bacterial etiology correlated with the pathogenic mechanisms, risk factors and treatment protocols. We analyzed the scientific literature published in the last 5 years regarding the recent applications of mRNA analysis in periodontal disease for the main known bacterial species considered to be the etiological agents: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Tannerella forsythia. We identified new pathogenic mechanisms, therapeutic target genes and possible pathways to prevent periodontal disease. The mRNA analysis, as well as the important technological progress in recent years, supports its implementation in the routine management of periodontal disease patients.
Periodontitis is a widespread inflammatory condition, characterized by a progressive deterioration of the supporting structures of the teeth. Due to the complexity of periodontal tissue and the surrounding inflammatory microenvironment, the repair of lesions at this level represents a continuous challenge. The regeneration of periodontal tissues is considered a promising strategy. Stem cells have remarkable properties, such as immunomodulatory potential, proliferation, migration, and multilineage differentiation. Thus, they can be used to repair tissue damage and reduce inflammation, potentially leading to periodontal regeneration. Among the stem cells used for periodontal regeneration, we studied dental mesenchymal stem cells (DMSCs), non-dental stem cells, and induced pluripotent stem cells (IPSCs). Although these cells have well documented important physiological characteristics, their use in contemporary practice to repair the affected periodontium is still a challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.