The defining feature of aromatic hydrocarbon compounds is a cyclic molecular structure stabilized by the delocalization of pi electrons that, according to the Hückel rule, need to total 4n + 2 (n = 1,2, em leader ); cyclic compounds with 4n pi electrons are antiaromatic and unstable. But in 1964, Heilbronner predicted on purely theoretical grounds that cyclic molecules with the topology of a Möbius band--a ring constructed by joining the ends of a rectangular strip after having given one end half a twist--should be aromatic if they contain 4n, rather than 4n + 2, pi electrons. The prediction stimulated attempts to synthesize Möbius aromatic hydrocarbons, but twisted cyclic molecules are destabilized by large ring strains, with the twist also suppressing overlap of the p orbitals involved in electron delocalization and stabilization. In larger cyclic molecules, ring strain is less pronounced but the structures are very flexible and flip back to the less-strained Hückel topology. Although transition-state species, an unstable intermediate and a non-conjugated cyclic molecule, all with a Möbius topology, have been documented, a stable aromatic Möbius system has not yet been realized. Here we report that combining a 'normal' aromatic structure (with p orbitals orthogonal to the ring plane) and a 'belt-like' aromatic structure (with p orbitals within the ring plane) yields a Möbius compound stabilized by its extended pi system.
Heilbronner in 1964 predicted that annulenes with ".. a planar perimeter of N=4r AO's, which would yield an open shell configuration when occupied by 4r electrons, can be twisted into a closed shell Möbius strip perimeter without loss in pi electron energy". We have been able to synthesize the first [4n]annulene with such a Möbius topology and now present further Möbius isomers and the details of their preparation as stable compounds. To address the question whether the twist in the pi system has an effect on the properties we systematically investigate energy, geometry and magnetic parameters of a large number isomers of [16]annulenes. The Möbius twisted annulenes are consistently more aromatic than the non-twisted isomers. This is true for the parent as well as our benzoannelated systems. Our results are in contrast to those published recently by C. Castro, W. L. Karney, P. von R. Schleyer et al.
In the aged brain, synaptic plasticity and memory show increased vulnerability to impairment by the inflammatory cytokine interleukin 1β . In this study, we evaluated the possibility that synapses may directly undergo maladaptive changes with age that augment sensitivity to IL-1β impairment. In hippocampal neuronal cultures, IL-1β increased the expression of the IL-1 receptor type 1 and the accessory coreceptor AcP (proinflammatory), but not of the AcPb (prosurvival) subunit, a reconfiguration that potentiates the responsiveness of neurons to IL-1β. To evaluate whether synapses develop a similar heightened sensitivity to IL-1β with age, we used an assay to track long-term potentiation (LTP) in synaptosomes. We found that IL-1β impairs LTP directly at the synapse and that sensitivity to IL-1β is augmented in aged hippocampal synapses. The increased synaptic sensitivity to IL-1β was due to IL-1 receptor subunit reconfiguration, characterized by a shift in the AcP/AcPb ratio, paralleling our culture data. We suggest that the age-related increase in brain IL-1β levels drives a shift in IL-1 receptor configuration, thus heightening the sensitivity to IL-1β. Accordingly, selective blocking of AcP-dependent signaling with Toll-IL-1 receptor domain peptidomimetics prevented IL-1β-mediated LTP suppression and blocked the memory impairment induced in aged mice by peripheral immune challenge (bacterial lipopolysaccharide). Overall, this study demonstrates that increased AcP signaling, specifically at the synapse, underlies the augmented vulnerability to cognitive impairment by IL-1β that occurs with age.AcP | AcPb | neuroinflammation | receptor sensitivity | LTP
This Account is about coaxing molecules into spaces barely big enough to contain them: encapsulation complexes. In capsules, synthetic modules assemble to fold around their molecular targets, isolate them from the medium for relatively long times, place them in a hydrophobic environment, and present them with functional groups. These arrangements also exist in the interior spaces of biology, and the consequences include the familiar features of enzymes: rapid reactions, stabilization of reactive intermediates, and catalysis. But inside capsules there are phenomena unknown to biology or historical chemistry, including new structures, new stereochemical relationships, and new reaction pathways. In encapsulation complexes, as in architecture, the space that is created by a structure determines what goes on inside. There are constant interactions between the container and contained molecules: encounters are not left to chance; they are prearranged, prolonged, and intense. Unlike architecture, these reversibly formed containers emerge only when a suitable guest is present. The components exist, but they cannot assemble without anything inside. Modifications of the capsule components give rise to the results of the present Account. The focus will be on how seemingly small changes in the encapsulation complexes, exchanging a C═S for a C═O, reducing an angle here and there, or replacing a hydrogen with a methyl, can lead to unexpectedly large differences in behavior.
Template effects are an inevitable feature of supramolecular chemistry and were prominent in the discovery of crown ethers, carcerands and catenanes. Templates can act as guests or hosts, but in either role they must be structurally persistent - rigid or "hard" - on the timescale needed to form the final complexes. This report explores a peculiar effect encountered with self-assembled container molecules: soft templates. In these cases neither the guest nor the host has an independent existence, but they do coexist as complexes. The host and guest are prevented from collapsing into more familiar, stable structures by the forces that hold the complex together. The complexes represent emergent phenomena and offer a look at structures otherwise unknown in free solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.