The exponential increase in aviation activity and air traffic in recent decades has raised several public health issues. One of the critical public health concerns is runway safety and the increasing demand for airports without accidents. In addition to threatening human lives, runway accidents are often associated with severe environmental and pollution consequences. In this study, a three-step approach is used for runway risk assessment considering probability, location, and consequences of accidents through advanced statistical methods. This study proposes novel models for the implementation of these three steps in Iran. Data on runway excursion accidents were collected from several countries with similar air accident rates. The proposed models empower engineers to advance an accurate assessment of the accident probability and safety assessment of airports. For in-service airports, it is possible to assess existing runways to remove obstacles close to runways if necessary. Also, the proposed models can be used for preliminary evaluations of developing existing airports and the construction of new runways.
An optimum pavement structure design requires characterization of materials under traffic loading. Investigation of stress-strain relationship of materials, under traffic loading is advised to determine the appropriate stiffness modulus. Since stiffness modulus is extensively dependent to loading dynamics, the loading parameters in the laboratory testing condition should simulate the field condition as close as possible. In this paper, the importance of accurate determination of stiffness modulus was discussed. Significant loading parameters including loading waveform, loading time, and rest time were expressed in subgrade layer. It was demonstrated that for subgrade layer; haversine loading waveform can better present what practically occurs in the field compared to the square waveform. Furthermore, for this layer, the effect of loading time is intensified due to the increase in depth and decrease in the quality of materials. In addition, because of elasto-plastic nature of subgrade material, the rest period should be considered in determination of stiffness modulus.
The construction of different roads, such as freeways, highways, major roads or minor roads must be accompanied by constant monitoring and evaluation of service delivery. Pavements are generally assessed by engineers in terms of the smoothness, surface condition, structural condition and surface safety. Pavement assessment is often conducted using the qualitative indices such as international roughness index (IRI), pavement condition index (PCI), structural condition index (SCI) and skid resistance value (SRV), which are used for smoothness assessment, surface condition assessment, structural condition assessment, and surface safety assessment, respectively. In this paper, Tehran-Qom Freeway in Iran has been selected as the case study and its smoothness and pavement surface conditions are assessed. At 2-km intervals, a 100-meter sample unit is selected in the slow-speed lane (totally, 118 sample units). In these sample units, the PCI is calculated after a visual inspection of the pavement and the recording of distresses. Then, in each sample unit, the average IRI is computed. The purpose of this study is to provide a method for estimating PCI based on IRI. The proposed theory was developed by Random Forest (RF), and Random Forest optimized by Genetic Algorithm (RF-GA) methods and these methods were validated using correlation coefficient (CC), scattered index (SI), and Willmott’s index of agreement (WI) criteria. The proposed method reduces costs, saves time and eliminates the safety risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.