International audienceWe present a combined experimental and theoretical study of the complex dynamics of excited doubly ionized glycine molecules in the gas phase. Multicoincidence mass spectroscopic techniques together with ab initio molecular dynamics simulations and density functional theory calculations allow us to show that an ultrafast intramolecular hydrogen migration (∼30 fs) appears in competiton with the expected Coulomb repulsion
This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science.
Graphic abstract
A detailed experimental and theoretical investigation of the dynamics leading to fragmentation of doubly ionized molecular thiophene is presented. Dissociation of double-ionized molecules was induced by S 2p core photoionization and the ionic fragments were detected in coincidence with Auger electrons from the core-hole decay. Rich molecular dynamics was observed in electron-ion-ion coincidence maps exhibiting ring breaks accompanied by hydrogen losses and/or migration. The probabilities of various dissociation channels were seen to be very sensitive to the internal energy of the molecule. Theoretical simulations were performed by using the semiempirical self-consistent charge-density-functional tight-binding method. By running thousands of these simulations, the initial conditions encountered in the experiment were properly taken into account, including the systematic dependencies on the internal (thermal) energy. This systematic approach, not affordable with first-principle methods, provides a good overall description of the complex molecular dynamics observed in the experiment and shows good promise for applicability to larger molecules or clusters, thus opening the door to systematic investigations of complex dynamical processes occurring in radiation damage.
The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.