Extracellular matrix (ECM) molecules that are released by neurons and glial cells form perineuronal nets (PNNs) and modulate many neuronal and glial functions. PNNs, whose structure is still not known in detail, surround cell bodies and dendrites, which leaves free space for synapses to come into contact. A reduction in the expression of many neuronal ECM components adversely affects processes that are associated with synaptic plasticity, learning, and memory. At the same time, increased ECM activity, e.g., as a result of astrogliosis following brain damage or in neuroinflammation, can also have harmful consequences. The therapeutic use of enzymes to attenuate elevated neuronal ECM expression after injury or in Alzheimer’s disease has proven to be beneficial by promoting axon growth and increasing synaptic plasticity. Yet, severe impairment of ECM function can also lead to neurodegeneration. Thus, it appears that to ensure healthy neuronal function a delicate balance of ECM components must be maintained. In this paper we review the structure of PNNs and their components, such as hyaluronan, proteoglycans, core proteins, chondroitin sulphate proteoglycans, tenascins, and Hapln proteins. We also characterize the role of ECM in the functioning of the blood-brain barrier, neuronal communication, as well as the participation of PNNs in synaptic plasticity and some clinical aspects of perineuronal net impairment. Furthermore, we discuss the participation of PNNs in brain signaling. Understanding the molecular foundations of the ways that PNNs participate in brain signaling and synaptic plasticity, as well as how they change in physiological and pathological conditions, may help in the development of new therapies for many degenerative and inflammatory diseases of the brain.
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the ‘hallmarks of cancer’ in glioblastoma multiforme.Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Malignant glioma is a brain tumor with a very high mortality rate resulting from the specific morphology of its infiltrative growth and poor early detection rates. The causes of one of its very specific types, i.e., post-traumatic glioma, have been discussed for many years, with some studies providing evidence for mechanisms where the reaction to an injury may in some cases lead to the onset of carcinogenesis in the brain. In this review of the available literature, we discuss the consequences of breaking the blood–brain barrier and consequences of the influx of immune-system cells to the site of injury. We also analyze the influence of inflammatory mediators on the expression of genes controlling the process of apoptosis and the effect of chemical mutagenic factors on glial cells in the brain. We present the results of experimental studies indicating a relationship between injury and glioma development. However, epidemiological studies on post-traumatic glioma, of which only a few confirm the conclusions of experimental research, indicate that any potential relationship between injury and glioma, if any, is indirect.
The expression of desaturases is higher in many types of cancer, and despite their recognized role in oncogenesis, there has been no research on the expression of desaturases in glioblastoma multiforme (GBM). Tumor tissue samples were collected during surgery from 28 patients (16 men and 12 women) diagnosed with GBM. The effect of necrotic conditions and nutritional deficiency (mimicking conditions in the studied tumor zones) was studied in an in vitro culture of human brain (glioblastoma astrocytoma) U-87 MG cells. Analysis of desaturase expression was made by qRT-PCR and the immunohistochemistry method. In the tumor, the expression of stearoyl–coenzyme A desaturase (SCD) and fatty acid desaturases 2 (FADS2) was lower than in the peritumoral area. The expression of other desaturases did not differ in between the distinguished zones. We found no differences in the expression of SCD, fatty acid desaturases 1 (FADS1), or FADS2 between the sexes. Necrotic conditions and nutritional deficiency increased the expression of the studied desaturase in human brain (glioblastoma astrocytoma) U-87 MG cells. The obtained results suggest that (i) biosynthesis of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) in a GBM tumor is less intense than in the peritumoral area; (ii) expressions of SCD, SCD5, FADS1, and FADS2 correlate with each other in the necrotic core, growing tumor area, and peritumoral area; (iii) expressions of desaturases in a GBM tumor do not differ between the sexes; and (iv) nutritional deficiency increases the biosynthesis of MUFA and PUFA in GBM cells.
One line of research on the possible ways of inhibiting the growth of glioblastoma multiforme (GBM), a brain tumor with a very poor prognosis, is the analysis of its metabolism, such as fatty acid synthesis by desaturases and elongases. This study examines the expression of elongases ELOVL1, ELOVL2, ELOVL3, ELOVL4, ELOVL5, ELOVL6, and ELOVL7 in GBM tumor samples from 28 patients (16 men and 12 women), using a quantitative real-time polymerase chain reaction (qRT-PCR). To demonstrate the influence of the tumor microenvironment on the tested elongases, U-87 MG cells were cultured in nutrient-deficient conditions and with cobalt chloride (CoCl2) as a hypoxia-mimetic agent. The results showed that the expression of ELOVL1 and ELOVL7 in the GBM tumor was lower than in the peritumoral area. The expression of six of the seven studied elongases differed between the sexes. Hypoxia increased the expression of ELOVL5 and ELOVL6 and decreased the expression of ELOVL1, ELOVL3, ELOVL4, and ELOVL7 in U-87 MG cells. These results indicate that the synthesis of fatty acids, especially polyunsaturated fatty acids (PUFA), in GBM tumors may be higher in men than in women. In contrast, the synthesis of saturated fatty acids (SFA) may be higher in women than in men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.