An expansive library of structurally complex two-dimensional (2D) and three-dimensional (3D) lead halide perovskites has emerged over the past decade, finding applications in various aspects of photon management: photovoltaics, photodetection, light emission, and nonlinear optics. Needless to say, the highest degree of structural plasticity enjoys the former group, offering a rich playground for modifications of relevant optoelectronic parameters such as exciton energy. Structural tailorability is reflected in the ease of modification of the chemistry of the organic layers residing between inorganic slabs. In this vein, we show that the introduction of methylhydrazinium cation (MHy+, CH3NH2NH2 +) into 2D perovskite gives a material with a record low separation of the inorganic layers (8.91 Å at 300 K). Optical studies showed that MHy2PbBr4 features the most red-shifted excitonic absorption among all known A2PbBr4 compounds as well as a small exciton binding energy of 99.9 meV. MHy2PbBr4 crystallizes in polar Pmn21 symmetry at room emperature (phase III) and at 351 K undergoes a phase transition to modulated Pmnm phase (II) followed by another phase transition at 371 K to Pmnm phase (I). The ferroelectric property of room-temperature phase III is inferred from switching of the pyrocurrent, dielectric measurements, and optical birefringence results. MHy2PbBr4 exhibits multiple nonlinear optical phenomena such as second-harmonic generation, third-harmonic generation, two-photon excited luminescence, and multiphoton excited luminescence. Analysis of MHy2PbBr4 single-crystal luminescence spectra obtained through linear and nonlinear optical excitation pathways indicates that free exciton emission is readily probed by the ultraviolet excitation, whereas crumpled exciton emission is detected under two- and multiphoton excitation conditions. Overall, our results demonstrate that incorporation of MHy+ into the organic layer is an emergent strategy for obtaining a 2D perovskite with polar character and multifunctional properties.
We present an X-ray absorption spectroscopy study on Fe-doped SrTiO3 thin films grown by pulsed laser deposition. The Fe L2,3 edge spectra are recorded for doping concentrations from 0-5% after several annealing steps at moderate temperatures. The Fe valence state is determined by comparison with an ilmenite reference sample and calculations according to the charge transfer multiplet model. We found clear evidence of Fe(2+) and Fe(3+) oxidation states independently of the doping concentration. The Fe(2+) signal is enhanced at the surface and increases after annealing. The Fe(2+) configuration is in contrast to the mixed Fe(3+)/Fe(4+) valence state in bulk material and must be explained by the specific defect structure of the thin films due to the kinetically limited growth which induces a high concentration of oxygen vacancies.
Micro‐Raman light scattering experiments on PbZrO3 (PZO) single crystal doped with Nb5+ have been investigated. Special attention was paid to the paraelectric (PE) phase in which nominally forbidden first‐order Raman spectra were detected at temperatures far above the phase transition TC. Complex Raman spectra were observed in the vicinity of three structural phase transitions. These results mainly from the coexistence of phases with different symmetries in a wide temperature range below TC. The Raman measurements have been compared with dielectric and optical observations and proved that polar nanoregions in a centrosymmetric lattice appear well above TC. It was shown that doping ABO3 perovskites with heterovalent ions like Nb5+ unbalances charge neutrality of the lattice and strongly extends the temperature range of polar regions. The investigations performed point out that in the PE matrix the interaction between electrons and lattice vibrations, as recently suggested for pure PZO, plays an important role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.