In this research, we present a semi-supervised segmentation solution using convolutional autoencoders to solve the problem of segmentation tasks having a small number of ground-truth images. We evaluate the proposed deep network architecture for the detection of nests of nevus cells in histopathological images of skin specimens is an important step in dermatopathology. The diagnostic criteria based on the degree of uniformity and symmetry of border irregularities are particularly vital in dermatopathology, in order to distinguish between benign and malignant skin lesions. However, to the best of our knowledge, it is the first described method to segment the nests region. The novelty of our approach is not only the area of research, but, furthermore, we address a problem with a small ground-truth dataset. We propose an effective computer-vision based deep learning tool that can perform the nests segmentation based on an autoencoder architecture with two learning steps. Experimental results verified the effectiveness of the proposed approach and its ability to segment nests areas with Dice similarity coefficient 0.81, sensitivity 0.76, and specificity 0.94, which is a state-of-the-art result.
(1) Background: The stethoscope is one of the main accessory tools in the diagnosis of temporomandibular joint disorders (TMD). However, the clinical auscultation of the masticatory system still lacks computer-aided support, which would decrease the time needed for each diagnosis. This can be achieved with digital signal processing and classification algorithms. The segmentation of acoustic signals is usually the first step in many sound processing methodologies. We postulate that it is possible to implement the automatic segmentation of the acoustic signals of the temporomandibular joint (TMJ), which can contribute to the development of advanced TMD classification algorithms. (2) Methods: In this paper, we compare two different methods for the segmentation of TMJ sounds which are used in diagnosis of the masticatory system. The first method is based solely on digital signal processing (DSP) and includes filtering and envelope calculation. The second method takes advantage of a deep learning approach established on a U-Net neural network, combined with long short-term memory (LSTM) architecture. (3) Results: Both developed methods were validated against our own TMJ sound database created from the signals recorded with an electronic stethoscope during a clinical diagnostic trail of TMJ. The Dice score of the DSP method was 0.86 and the sensitivity was 0.91; for the deep learning approach, Dice score was 0.85 and there was a sensitivity of 0.98. (4) Conclusions: The presented results indicate that with the use of signal processing and deep learning, it is possible to automatically segment the TMJ sounds into sections of diagnostic value. Such methods can provide representative data for the development of TMD classification algorithms.
Deep learning methods, used in machine vision challenges, often face the problem of the amount and quality of data. To address this issue, we investigate the transfer learning method. In this study, we briefly describe the idea and introduce two main strategies of transfer learning. We also present the widely-used neural network models, that in recent years performed best in ImageNet classification challenges. Furthermore, we shortly describe three different experiments from computer vision field, that confirm the developed algorithms ability to classify images with overall accuracy 87.2-95%. Achieved numbers are state-of-the-art results in melanoma thickness prediction, anomaly detection and Clostridium di cile cytotoxicity classification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.